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Abstract: In boxing, an efficient punch requires a combination of force, velocity and stability of the 
athlete. Being able to monitor these parameters has the potential to better inform training practices 
required to reach high performance. Hence, the aim of this study was to investigate the differences 
in punching execution between two groups of elite boxers (senior vs. junior) using three 
biomechanical indicators of performance in boxing. Each athlete was equipped with an 
instrumented suit composed of 17 inertial measurement units (IMU) and were asked to perform 
several series of punches with 3 standardized punching techniques (cross, hook and uppercut) on a 
punching bag with maximal force. Linear velocity, stability and punch forces were computed from 
the different sensors. Our findings show that senior boxers systematically produced more force and 
at a higher velocity for the three punching techniques compared to juniors. The IMU analysis also 
reveals differences of joint contributions between seniors and juniors, juniors presenting a higher 
contribution of the shoulder for the three punching techniques. 
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1. Introduction 

Boxing is a physically demanding combat sport. Boxers rely on a combination of strength, 
coordination, speed, and stamina to succeed in impacting the opponent while evading an adversary’s 
punches [1,2]. A successful performance requires the ability to deliver precise punches above the belt, 
to the head or the torso, without being punched back. In amateur boxing, such as seen during the 
Olympic Games, boxers aim to score by striking the opponents during rounds of 3 min. As varying 
degrees of force and speed are required in boxing, athletes throw punches with their rear or front 
hand [3]. The rear hand (the furthest from the target) usually provides more punching force while 
maximal speed can be achieved with the front hand (the closest to the target) [4]. The defensive boxer 
is allowed to dodge punches with hand, trunk as well as feet actions. There are three main attacking 
techniques: the cross, hook and uppercut. The cross is a forward translation of the body whereas the 
two other punches involve an overall rotation of the body. Previous studies have reported an activity 
rate of ~1.55 actions/s, consisting of ~21 punches, ~3.6 defensive movements and ~56 vertical hip 
movements per-minute over three subsequent rounds lasting ~184 s for male elite athletes [5,6]. 

During the round, boxers aim to knock their opponent out, touching the optimal target zone in 
order to win the fight. As knockout is a constant goal during a match, boxers must increase punch 
impact and, as a consequence, knockout power [7,8]. Unlike professionals, amateur boxers tend to 
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favor quick strikes over heavy blows [8]. Therefore, they need to develop maximal speed at the end 
of the distal segment of the kinematic chain. In this aspect, boxing generates the same type of segment 
interactions as sports involving throwing and kicking such as baseball, tennis, golf or rugby. 
Achieving high speed, and force, at the end of the distal segment is usually a result of a proximal-to-
distal sequencing motion as the summation of speed principle states [9–11]. However, its 
computation remains a challenge [12]. The synchronization of the body segments’ motion can 
highlight the differences in skills between athletes [9]. Hence, understanding these biomechanical 
differences can provide valuable insight for lower level athletes and coaching staff desiring to refine 
their training practices. 

With this in mind, the aim of our study was twofold: (a) to identify biomechanical differences 
between senior elite boxers and junior elite boxers; and (b) to discriminate the biomechanical 
parameters responsible for performance in elite boxers. 

2. Materials and Methods 

2.1. Participants 

Two groups of boxers volunteered to participate in this study: 15 senior elite potential Olympic 
medalist boxers (Senior) (mean age 21.1 ± 3.0 years; stature 1.79 ± 0.09 m; body mass 73.6 ± 17.9 kg) 
from the French National boxing academy and 8 junior elite boxers (Junior) (mean age 16.1 ± 0.7 years; 
stature 1.75 ± 0.05 m; body mass = 61.0 ± 9.3 kg) from a regional boxing academy. All the participants 
were injury-free at the time of data acquisition. This study was approved by the French Boxing 
Federation and carried out in accordance with the Declaration of Helsinki. All the participants were 
informed of the objectives and risks of the study and their parent or legal guardian signed an 
informed consent form before the study began. 

2.2. Protocol 

Before testing sessions, a standardized warm-up was organized under the supervision of the 
coach. The participants were asked to perform 3 punches using standardized techniques (cross, hook 
and uppercut) with, at first, their front hand, then, their rear hand, and finally, a combo: front hand 
immediately followed by rear hand. A series of 3 punches was executed for each technique. The 
instructions were to complete a precise motion in the direction of the punching bag with maximal 
possible strength. Participants wore a movement (MVN) Biomech Link suit (Xsens Technologies BV, 
Enschede, The Netherlands) collecting live kinematic data during the entire movement. This suit was 
composed of 17 miniature inertial measurement units (IMU) strapped onto the body. Each IMU 
contained a 3D gyroscope, a 3D accelerometer, and a 3D magnetometer in an 18 g box (about the size 
of half a matchbox 3.5 × 2.5 × 0.8 cm). Each IMU captured the 6 degrees of freedom of the body 
segment to which it was fixed, in real time at a sampling frequency of 240 Hz. 

2.3. Data Processing 

Based on the linear velocity and acceleration of each segment computed from the IMU, a 
customized MatLabTM program (7.10.0, R2010a, Natick, MA, USA) calculated the estimate of the 
ground reaction force distribution and the punch force at impact. All biomechanical analyses were 
performed according to the De Leva anthropometrical model [13]. 

This study focused on three parameters: the linear velocity at impact accessed via the hand’s 
IMU, the stability processed from the ground reaction force distribution and the punching force at 
impact. The determination of stability and punching force is detailed below. 

2.3.1. Stability Computation 

Stability was computed from the estimation of the vertical ground reaction force (GRF) by the 
projection of the center of mass, as proposed in Equation (1). 
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𝐺𝑅𝐹ሬሬሬሬሬሬሬሬ⃗ = 𝑚(𝑎ெ௭ሬሬሬሬሬሬሬሬሬ⃗ − 𝑔 ሬሬሬሬሬ⃗ ) (1) 

In this equation, based on Newton’s second law, 𝐺𝑅𝐹ሬሬሬሬሬሬሬሬ⃗  corresponds to the total ground reaction 
forces, m is the mass of the athlete, 𝑎ெ௭ሬሬሬሬሬሬሬሬሬ⃗  is the vertical component of the center of mass acceleration 
obtained by the IMU, 𝑔 ሬሬሬሬሬ⃗  corresponds to the gravitational acceleration. 

In order to study the leg which is the most involved during the motion and to measure the 
athlete’s balance during the motion, the GRF distribution between the right and left leg is computed 
based on a proportional distribution of the toes. First, the center of mass is calculated from the sum 
of the center of mass of each body segment and then projected onto the ground. Then the distance 
between the projected center of mass and the toes (respectively 𝑑ெି and 𝑑ெିோ for the left and the 
right foot) is measured with the kinematic data acquired by the IMU. 𝑑்௧ corresponded to the 
distance between both feet (2). GRF distribution on the right foot (ฮ𝐺𝑅𝐹ሬሬሬሬሬሬሬሬ⃗ ฮோ ) and on the left foot 
(ฮ𝐺𝑅𝐹ሬሬሬሬሬሬሬሬ⃗ ฮ) was computed following the Equations (3) and (4) and was presented as a percentage of ฮ𝐺𝑅𝐹ሬሬሬሬሬሬሬሬ⃗ ฮ. GRF distribution of the front leg was used to estimate the boxer’s stability: the athlete was 
the most stable when the GRF distribution of the front leg was close to 50%. 𝑑்௧ =  𝑑ெି + 𝑑ெିோ (2) 

ฮ𝐺𝑅𝐹ሬሬሬሬሬሬሬሬ⃗ ฮோ =  𝑑ெି  × ฮ𝐺𝑅𝐹ሬሬሬሬሬሬሬሬ⃗ ฮ𝑑்௧  (3) 

ฮ𝐺𝑅𝐹ሬሬሬሬሬሬሬሬ⃗ ฮ =  𝑑ெିோ  × ฮ𝐺𝑅𝐹ሬሬሬሬሬሬሬሬ⃗ ฮ𝑑்௧  (4) 

2.3.2. Punching force Estimation 

When computing the punching force, GRF was assumed constant between the moment 
preceding the impact and the impact. Thus, following the hypothesis that the lateral ground contact 
forces are negligible, it is possible to write Newton’s second law before impact and at impact [14]. 
The punch force at impact �⃗� can be singled out and calculated: ฮ�⃗�ฮ +  ma =  ∆∆୲  (5) where ฮ�⃗�ฮ is 
equivalent to the magnitude of the impact force of the punching bag on the boxer’s hand, ฮ𝐺𝑅𝐹ሬሬሬሬሬሬሬሬ⃗ ฮோ 
and ฮ𝐺𝑅𝐹ሬሬሬሬሬሬሬሬ⃗ ฮ match the ground reaction forces, m is the boxer’s weight, 𝑃 corresponds to the linear 
momentum of the boxer, t is the time frame, �⃗�  is the gravitational acceleration and �⃗�  is the 
acceleration of the center of mass of the boxer at the moment before impact. 

2.3.3. Contribution of Body Segment Calculation 

The contribution of body segments is computed by the analytic calculation of the velocity of the 
segment of interest. A kinematic chain is built from the reference point, in this case it is the pelvis, to 
the segment of interest [10]. The linear velocity of the kinematic chain is based on the linear velocity 
of the reference point. The segment angular velocity describes the other segments between the 
reference point and the segment of interest. 

2.4. Statistical Analyses 

Differences between groups (Senior vs. Junior) were analysed by independent t-tests. When the 
assumption of normal distribution was violated, a non-parametric Mann–Whitney U test was used. 
For all statistical analyses, a p value of 0.05 was considered to indicate significance. All data are 
presented as means ± standard deviations (SD), unless otherwise indicated. 
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3. Results 

3.1. Punching Force and Speed 

For all punching techniques, maximal force production was higher (p < 0.01) in Senior compared 
to Junior boxers (Figure 1A,B). The mean maximal force produced by Senior boxers was 3158 ± 1467, 
2999 ± 1818 and 3242 ± 1767 N, while it was 1021 ± 449, 544 ± 235 and 700 ± 287 N for Junior boxers, 
for the cross, hook and uppercut, respectively. As displayed in Figure 1A, the results followed the 
same pattern between Senior and Junior boxers when force production is was considered relative to 
individual body mass (in N/kg). The punching speed was also higher (p < 0.01) in Senior compared 
to Junior boxers for the hook and uppercut only (Figure 1C). The mean Senior’s maximal punching 
speed was 8.1 ± 2.1, 11.2 ± 2.0 and 10.2 ± 1.8 m·s−1 while it was 8.1 ± 1.3, 8.9 ± 0.9 and 7.3 ± 1.0 m·s−1 for 
Junior boxers, for the cross, hook and uppercut, respectively. 

 

Figure 1. (A), punching force (N/kg), (B), punching force (N), (C), punching speed (m·s−1) for the 
different punching techniques for the two groups of boxers. Bars represent mean values while white 
points represent individual data points. * denotes a significant difference between groups (p ≤ 0.05). 

3.2. Technical Aspects of the Punch 

The analysis of body segments’ contributions showed different patterns between punches and 
between groups (Figure 2). In both groups, the elbow contributed the most to the punch during the 
cross (39.2% ± 35.9% and 27.1% ± 22.2% for Senior and Junior boxers, respectively), whereas it was 
the shoulder for the hook and uppercut. Additionally, the shoulder contribution was systematically 
higher in Junior compared to Senior boxers for the cross (29.1% ± 8.4% vs. 15.6 ± 12.5%, p = 0.01), hook 
(71.0% ± 12.3% vs. 50.1% ± 21.0%, p = 0.01) and uppercut (67.3% ± 11.9% vs. 54.8% ± 12.3%, p = 0.02). 
The trunk contribution was also higher in Junior compared to Senior boxers only for the cross (16.0% 
± 10.6% vs. 6.7% ± 6.8%, p = 0.01). The pelvis contribution in the linear plane was higher (p = 0.02) in 
Senior (3.04% ± 4.2%) compared to Junior (−0.6% ± 1.5%) during the hook only. 

 
Figure 2. Segments’ translation and rotation contributions (%) for the three punching techniques for 
the two groups of boxers. Segments’ contributions for trunk, shoulder and elbow are a combined 
translation and rotation. Bars represent mean values while white points represent individual data 
points. * denotes a significant difference between groups (p ≤ 0.05). 

The 3D kinematic analysis also showed no difference in body positioning between groups for 
the three punching types, except for the head angle which was lower (p = 0.01) in Junior (19.8° ± 4.9°) 
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compared to Senior (24.0° ± 3.0°) during the cross. GRF shows an imbalance between the left and 
right foot only during the cross and in similar proportions between groups (mean ground reaction 
contributions between feet: 60.6% ± 24.9% vs. 39.4 ± 24.9% and 54.1% ± 7.1% vs. 45.9% ± 7.1% for the 
left vs. right foot in Senior and Junior boxers, respectively). 

4. Discussion 

Performance in boxing requires a combination of force and velocity of the acting arm, originating 
from an optimal synchronization of the different body segments. We examined the biomechanical 
patterns and resulting forces produced by senior vs. junior elite boxers for three punching types. Our 
main findings reveal differences in force, velocity, balance and segment contributions between 
groups, thus better informing on the conditions required to perform in boxing. 

From the 3D kinematic analysis, we identified differences in motion patterns between the hook, 
uppercut and cross, across the groups of boxers. We find that in both groups, the elbow is the most 
active during the cross, while it is the shoulder for the hook and uppercut. The cross requires a 
straight trajectory with the elbow acting like a piston (flexion/extension) in a throwing movement in 
the sagittal plane and with very little rotation. The cross is considered as a short movement requiring 
the opening of the elbow to reach the target. In contrast, the hook and uppercut are longer and more 
complex. They require a circular trajectory in the sagittal plane with the shoulder predominantly 
mobilized to initiate a simultaneous rotation and translation of the arm. These differences of segment 
contributions observed in both groups between the cross and hook/uppercut show that the different 
punching techniques require very distinct biomechanical adjustments. 

In both groups, force production was relatively similar between punching techniques, while the 
punching speed tended to be higher for the hook, which can be explained by the swinging nature of 
the movement. Not surprisingly, force production was higher in senior compared to junior boxers 
for the three different punches regardless of the body mass of the athletes [15]. The force values 
recorded for seniors (≥3000 N) are in accordance with values reported in the literature for elite boxers 
[16]. The punching speed was also higher for seniors compared to juniors, though only for the hook 
and uppercut. The distribution of GRF between the left and right foot was rather similar between 
groups with the front foot (indicated as left foot) systematically showing the highest values compared 
to the rear foot (indicated as right foot) in both groups. The balance between GRF for the right and 
left foot is important in boxing in order to facilitate energy transfer from the lower body to upper 
limbs, thus facilitating force production. Although only few studies have focused on this parameter, 
it is generally accepted that the greater the legs’ contribution, the greater the punching force and this 
pattern is more prominent in experienced boxers [17]. An efficient boxer is typically characterized by 
a balanced foot grounding allowing throwing the fist through one synchronized movement of the 
scapula and upper body. 

5. Conclusions 

The aim of this study was to examine the biomechanical differences between elite senior and 
junior boxers in three different punching techniques. Nanotechnology inertial measurement units 
were positioned directly onto body segments to provide a full decomposition of the biomechanical 
variables associated with the boxing tasks. Results indicate differences in force, velocity, and body 
segment distributions between the two groups. These findings allow to highlight the best punching 
techniques, thus providing valuable information for practitioners and athletes to refine their training 
practices.  
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