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Abstract

The age-performance relationship describes changes in the organism’s structural and functional capabilities over
the course of the lifespan. The typical, empirical pattern is an asymmetrical inverted-U shape association with peak
capacity occurring early in life. This process is well described in the literature, with an increasing interest in features
that characterize this pattern, such as the rate of growth, age of peak performance, and rate of decline with aging. This
is usually examined in cohorts of individuals followed over time with repeat assessments of physical or cognitive
abilities. This framework ought to be integrated into public health programs, embedding the beneficial (such as
physical or cognitive training) or adverse effects (such as chronic diseases or injuries) that respectively sustain or limit
capabilities. The maintenance of physical or cognitive performances at older ages would result in both optimal health
and promote resistance to disabling conditions and chronic diseases, such as obesity and type 2 diabetes. The causes
of accelerated degeneration of health optima are mainly: sedentary and unhealthy lifestyles -including poor nutrition-,
exposure to environmental pollutants, and heterogeneity in aging. Better knowledge of optima, compatible with or
required for good health, should also allow for establishing ideal conditions for longevity.
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Introduction
There has always been a large interest in the physiolog-
ical limits of mankind. Measuring human capabilities in
physical or cognitive performances or assessing maximal
lifespan illustrates such a quest [1]. Such an approach
focuses on sports performance, including the precise
quantification of speed, strength, or endurance among
others for the investigation of maximal physical capa-
bilities. Comprehensive data-sets have allowed descrip-
tion and forecast improvements in physical performance
during the past several decades [2]. This research sug-
gested a finite evolution with an S-shaped growth over
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time, revealing considerable improvements in sport per-
formances, that reached a plateau in the 1990’s. This
growth has been punctuated by improvements related to
major technological advances in materials, aerodynamics,
training techniques, pharmacology - including doping -
and biomechanics. However, despite recent innovations,
data now suggests that top performances exhibit a major
slowdown in progression, and even a plateau in some
events [2]. As the relative gap between performances has
narrowed, greater attention has been paid to environmen-
tal factors such as nutrition, psychosocial context, injury
prevention/rehabilitation, and performance tracking. In
order to guide talent detection and development, further
insight may also come from a better understanding of the
age-related changes in performance. A lifespan approach
may also help in assessing the effects of injuries and
recovery [3].
Use of the sports performance paradigm provides an

important approach to study the age-related development
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in physical or cognitive capabilities and to understand
the effects of aging over the lifecourse. The advances in
technology allow the collection and exploitation of large
data-sets. Knowledge gained from the study of the age-
performance relationship can now be related to health
with an integrated view [4]. In this review, we detail the
past and recent findings in this field from a public health
perspective, relating performance patterns to the cur-
rent strategies for increasing lifespan through nutrition,
therapeutic interventions and physical activity.

The age-performance relationship
Aging impairs most physical [5], skill-based [6, 7], and
physiological capacities [8–14]. The decline has been
widely studied in sport science with a focus on measuring
performance drops in master athletes [15], a feature that
was heterogeneous across activities, with strength events
generally associated with an earlier decline as compared
to endurance ones [15]. This can be explained by the mul-
tiple biological alterations occurring with aging, such as
changes in the structure and function of most organs,
including skeletal muscles, heart, vessels, or the brain [16].
Research also emphasized consideration of the whole-life
development and decline in human functional capacity,
a useful tool in assessing the complete physical and cog-
nitive pattern with aging [14, 17–19]. The focus is on
describing the positive convex hull of peak performance as
a function of aging. The convex hull was found to be a con-
tinuous, asymmetrical inverted-U pattern (or ), where
the age of peak performance occurs in the earlier part of
life. The first phase of the is related to all intrinsic
and extrinsic conditions favoring or handicapping devel-
opment of functional capacity. For instance, nutritional
status of the mother is associated with the weight and
health status of her infants [20–23], and ultimately with
their longevity [24, 25]. This relation can be understood
through the lens of a non-optimum development phase
resulting in a diminished peak of performance. A low
peak performance probably results in a shorter lifespan
(here performance is understood as an indicator of the
psychosocial and physical status). The second phase of
the refers to age-related decline. All conditions that
contribute to restricting peak performance or accelerat-
ing decline are likely to be associated with an increased
pace of aging and ultimately with a shorter life expectancy.
Hence, conditions that impair performance may change
life history trajectories and result in increased prema-
ture mortality. For instance, the diminished respiratory
function observed in rescue workers from the Septem-
ber 11, 2001 disaster in New York may ultimately reduce
their life expectancy [26]. Air pollution in major cities
is a difficulty for athletes [27], for instance the parti-
cle pollution in Addis Ababa has been a factor in the
relative decline of Ethiopian athletes compared to those

in Kenyan. Other studies showed the structural changes
that occur in human skeletal muscles with age and found
them to get weaker and smaller with advanced age (sar-
copenia) [28]. Constantin et al. examined muscle biopsies
from patients after 4 h of surgery where a similar profile
was observed to that of immobilization of muscle. Lev-
els of IL6 and TNFα were increased markedly which is
associated with considerable inflammation-driven mus-
cle breakdown. This is a cause of frailty in post intensive
care and ageing with muscle degradation. [29]. Other bio-
logical processes associated with the performance drop
have been suggested; potential candidates being persis-
tent metabolic waste products, interactions between dam-
aged cell components (e.g., misfolded proteins), reactive
oxygen species, telomere attrition, etc. [14, 18]. These
parameters have the commonality of following the rule of
increased entropy [30].

Estimating the age of peak performance
The has generated noticeable interest in sport sci-
ence as well as in public health for its consistency across
performance domains. The attributes of this pattern hold
valuable information such as rate of growth, age when
peak performance occurs, and rate of decline. Age at
peak performance allows for the optimization of the
species capabilities by detecting the age of outstanding
achievement, i.e. when athletes are expected to reach
their peak physical condition. This was investigated in
many other areas, including creative output, writing, lyric
poetry, pure mathematics, theoretical physics, philoso-
phy, medicine, general scholarship, military and diplo-
matic success, among others [31]. Multiple methods have
been developed to estimate the age of peak performance,
including typical polynomial curve fitting, mixed mod-
els, rolling means and other regression analyses [32].
Quadratic and other second-order polynomial fittings,
such as in [33] and in [31], provide a poor estimate of
the age of peak performance as the is consistently
reported to be asymmetrical, with an early (i.e. before
mid-life) age of peak performance [14, 17, 18, 31, 34, 35].
One of the earlier empirical approaches describing the

was introduced by Moore in 1975 using the equation
P(t) = a(1 − e−bt) + c(1 − edt),P(t) ≥ 0 where a, b, c,
d are four positive constants and P(t) is the performance
value at age t [34]. He investigated the in 15 run-
ning and 2 throwing events in track and field and showed
that this equation provided an excellent fit for the data. It
has also been applied to other sports (tennis, swimming)
and cognitively demanding activities (chess contests) with
great accuracy [14, 17, 35]. For all these regressions, the
values of a/b and c/d are always greater than 1, which
suggests that using a quadratic equation to describe the
pattern is not efficient. Moore’s approach has been crit-
icized for having no biological or physiological meaning
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in its design, similar to most previous equations, which
were constructed only from an empirical perspective [18].
We recently introduced a biological model relating cell
proliferation (leading to growth) and loss in cell function-
ality (leading to performance decline) [18]. We showed
this model could be adjusted to a set of various human
and non-human physical or cognitive performances while
allowing for comparisons of the resulting patterns using
the normalized growth and degeneration rates. However,
much experimental and methodological work is required
to bridge the gap between the whole-body performance
and cell biology within an aging framework.

At the individual scale
Most of the previous studies investigated the at the
species rather than individual scale, meaning that the

was averaged over a cohort of selected individuals.
A few studies provided examples of the age-performance
relationship at the individual scale -or ‘trajectory’- which
also exhibited a in track and field, swimming, chess,
cycling [17, 36], and tennis [35]. An almost complete
trajectory was also described in Dill’s study, which inves-
tigated the trajectory of marathoner Clarence DeMar
from the age of 22 to 66 years old [37]. This strength-
ened the main assumption that the is congruent, i.e.
the individual and the average (species) trajectories are a

and share similar properties, such as asymmetry and
non-linear growth and decline. However, heterogeneity is
null at the species scale, as the is defined by a con-
vex envelope, thus representing the upper boundary of
all individual’s trajectories. On the other hand, a strong
heterogeneity characterizes individual athlete’s trajecto-
ries. Premature (with faster maturation) or delayed (with
slower maturation) individuals have an age of peak perfor-
mance at an earlier (resp. later) stage of life compared to
the average (Fig. 1a & b). This can be the result of mul-
tiple endogenous and exogenous factors including, but
not limited to, genetic heterogeneity and varying social or
environmental conditions.

In other species
From a biological point of view, such alterations with
aging are also empirically measured in other species,
including the nematode (Caenorhabditis elegans), mouse
lemurs (Microcebus murinus), mice (Mus domesticus),
greyhounds and thoroughbreds [14, 18, 38, 39]. For all
studied species, the convex hull is a , with the age of
peak performance occurring earlier in life, ranging from
4.5% (mice) to 27% (grip strength in mouse lemurs) of
the estimated lifespan [18]. Yet, other studies pointed
out similar observations in drosophila [40, 41], codling
moths [42], rodents and monkeys [43], and zebrafish
[44]. This research furthers knowledge on physical and
mental development from the time of the first cellular

division. Functional assessments provide unique pheno-
typic biomarkers, as well as convenient tools to measure
responses to later life interventions [45]. It may also drive
the design of cohorts and protocols in order to better
assess the early stages of chronic pathologies, such as
Alzheimer’s disease, that gradually worsen with age, accel-
erates neuronal aging and advances the entrance into the
stage of brain insufficiency (in the sense of an organ failure
such as in renal or heart failure).

Public health perspective
The age-performance relationship has also been studied
in the general population [46–48]. Nassif et al. investi-
gated the age-performance relationship in French volun-
teers (for a total of n = 31, 349 individuals) aged between
4 and 80 years old who participated in events dedi-
cated to measuring physical fitness [46]. They observed
a suggesting the species pattern is consistent across
elite athletes and the general population. Bongard et
al. showed that the relationship between 1-hour swim-
ming distance and age for 4271 individuals (2173 men
and 2098 women), aged 19–91 years, had a non-linear
(quadratic) decline [48]. This could be explained by the
fact that the underlying biological mechanisms leading to
decline in performance affects all individuals in a simi-
lar fashion. The picture is not as clear when analyzing
the individual trajectory from a public health perspec-
tive. In fact, individual history -health & chronic diseases-
or personal lifestyle -periodic training conditions, smok-
ing, alcohol, etc.- drive the trajectory, meaning that it may
not exhibit a or that the age of peak performance
and rate of decline may follow a heterogeneous distri-
bution with multiple ages of peak performance, some of
them occurring later in life [49] (see Fig. 2a for an exam-
ple). For instance, quitting smoking with the objective of
running a marathon will strongly alter an individual’s tra-
jectory. Thus, measuring performance at different ages
would allow monitoring of physical ability as a proxy of
physical fitness [45].

Strategies to delay performance decline
Physical andmental activity
There are several strategies to modify age-related health
trajectory: physical activity is thought to have beneficial
effects on both physical health and mental well-being [50,
51]. As defined by the World Health Organization, physi-
cal activity is ‘any bodily movement produced by skeletal
muscles that requires energy expenditure’ whereas exer-
cise is ‘planned, structured, repetitive and purposeful’. For
purposes of this review, only physical activity measured by
activity monitors was considered. It has the potential to
increase lifespan while reducing the global burden of dis-
ease [52, 53]. It has an effect over the regulation of aging
within and across several physiological systems [54]. For
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Fig. 1 Heterogeneity in individual trajectories in two contests. Performance is gathered in (A, C) the 100m. straight (physical contest) and (B, D)
competitions of chess Grandmasters (cognitive contest). Each dot corresponds to a performance and each color corresponds to an individual. The
black line is the average performance at each age. A total of 935 unique trajectories of elite athletes are plotted in (C), totaling 57,079 performances.
Sources for performance data are detailed in [18]. A total of 1477 unique trajectories of Grandmasters are described in (D), totaling 138,015
performances. Grandmasters’ ratings are gathered from Jeff Sonas’ Chessmetrics website (http://www.chessmetrics.com). A random selection of 10
individual trajectories are presented in A and B

older adults, sarcopenia, frailty and osteoporosis can be
major concerns therefore, strength training exercises may
be particularly beneficial [55–57]. Physical activity has
strong benefits for maintaining functional independence
and health-related quality of life, in addition to possible
lifespan extension. [58, 59]. There is empirical evidence of
the anti-inflammatory effects of physical activity [60, 61].
Chronic inflammation has deleterious effects on physio-
logical function [62], increasing the risk and progression
of chronic diseases such as several types of cancer, [63]
cardiovascular disease, and the risk of mortality [64]. The
benefits of physical activity appears to depend on the
amount of weekly activity in a non-linear fashion [65,
66]. The minimum amount of physical activity affecting
mortality is estimated at 15 min per day, resulting in 3
years of increased longevity [67]. Much higher doses, such
as practiced by highly trained athletes, engaged in about
ten times the amount recommended by the WHO, has

been associated with 7 years of increased life expectancy
[68, 69]. Greater levels of physical activity, even at
advanced ages, seems to result in maintenance of func-
tional capacity, that may prevent age-related decline and
favor a longer lifespan [54, 70]. The slower rate of func-
tional decline has been shown to be predictive of lower
mortality rates. Previous studies have shown that walking
speed is inversely related to all-cause mortality [71, 72].
Walking under 3km/hour was related with a higher prob-
ability of death in the following 5 years [73, 74]. Lower
grip strength, assessed by dynamometer, is related to both
musculoskeletal disorders but, more importantly, with all-
causemortality [75]. A recent study showed an association
between the number of push-ups and the risk of cardio-
vascular events in midlife [76]. The converging evidence
suggests an complex association between physical activity,
measures of functional capabilities, and longevity. Lazu-
rus and Harridge introduced the ‘Set Point Theory’ which

http://www.chessmetrics.com
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Fig. 2 History of individual trajectories and strategies to expand the ; Performance against age in arbitrary units for (A) an individual that alters
his in a self autonomous manner and (B) effect of a beneficial strategy on another individual . The described in (A) is the result of
perturbations associated with (i) detrimental lifestyle (such as sedentary behavior) in early childhood, (ii) an injury or disease affecting the
performance and (iii) a major change in lifestyle that results in an artificial, delayed age of peak performance occurring much later in life. In (B) we
show how a beneficial strategy is expected to expand the , providing room for an increase in performance

hypothesizes that a given amount of physical activity is
needed to optimize health with aging, maximizing the
‘healthspan’ [77]. Their analysis is based solely on the
decreasing part of the , but as detailed above the
decrease in performance is complex in all situations stud-
ied. Given the inevitable age-related decline in functional
capacity, accompanied by degeneration in multiple organ
systems, it is important to identify targets that could
compress morbidity. Physical activity is one such target,
with benefits for health that have therapeutic and societal
value.
The effect of physical activity on mental health is

currently being investigated with heterogeneous results.
Some researches suggest that physical activity may delay
the onset of neurodegenerative processes and can be a
potential adjunctive treatment for neuropsychiatric disor-
ders such as depression [78–80] and cognitive impairment
[81]. Physical activity might also be a promising strategy
for dementia prevention and disease modification [82],
although this is a late-stage disease. Fiatarone Singh et
al. showed the biggest effect size with strength training,
thus far recorded, in delaying cognitive decline at an early
stage (mild cognitive impairment) [83] (see also [84, 85]).
But the effect is not so clear, as other studies pointed out
that physical activity does not slow cognitive impairment
in people with mild to moderate dementia [86]. There
also seems to be little evidence of a neuroprotective effect
of physical activity when investigating such effects in the
Whitehall II cohort study [87], although the Framingham
study shows clear effects on brain volume in the elderly
[88]. On the other hand, several researches showed that
cognitive training seems to be associated with a reduction
in the risk of dementia [89, 90].

Nutritional strategies
Another possible approach for hindering the age-related
decline in functional performance and increasing lifespan
is changes in nutritional strategy. Several types of diets can
increase chronic inflammation further escalating the risk
of degenerative diseases such as type 2 diabetes, stroke,
coronary heart disease [91] or increasing size and speed
of tumor growth [92]. In addition, caloric restriction (CR)
-the decrease in daily food intake by about 30%- or inter-
mittent fasting -cycling between periods of fasting and
eating- are strategies currently being investigated in ani-
mal models [93, 94]. It should be noted that calorically
restricted and ad libitum-fed animals are relatively seden-
tary in testing facilities which questions the definition and
status of control and CR animals. It seems that animals
in the wild have access to food comparable to CR ani-
mals in animal facilities but maintain an increased level
of activity [95]. Akbaraly et al. also showed that diet qual-
ity assessed duringmidlife was not significantly associated
with subsequent risk for dementia but it was associated
with risk of mortality [96]. However, it seems obvious that
implementing CR in humans is unlikely. Worse, results in
humans demonstrate that diets often lead to weight gain
in the long term. In a study comparing dieting to non-
dieting twins, Schur and colleagues demonstrated that
those dieting gainedmore weight over a four-years follow-
up than their non-dieting twin [97]. Long-term weight
loss maintenance is thus difficult to sustain [98] which
demonstrates the need for alternative strategies. Two of
the main alternatives to CR are: 1) increasing activity lev-
els and 2) developing drugs that mimic the cellular and
molecular pathways of CR (making CR studies manda-
tory to understand the underlying mechanistic pathways).
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However, as humans have evolved to run and hunt when
starved [99–101], this may represent a resolution to some
of the controversies surrounding caloric restriction. There
is a clear beneficial mechanism tometabolizing keto-acids
such as β-hydroxybutyrate. When starved, the expression
of brain-derived neurotrophic factor is promoted which in
turn shifts brain metabolism, is trophic to the brain, and
anti-inflammatory therefore, potentially aiding with age
related cognitive decline. This can be simply performed by
exercising in the morning, while having fasted overnight.
This practice forces the body to use keto-acids as its major
source of energy thereby making a major metabolic shift.
Measuring increased physical activity using activity mon-
itors has shown increased brain volume in the elderly [88].
Ideally, a combination of nutritional, behavioral and ther-
apeutic interventions could lead to strong synergic ben-
eficial effects for a better healthspan and longer lifespan,
constituting a direction for future research.

Threats and opportunities
The major growth of physical performance and capabil-
ities during the twentieth century has been associated
with considerable increases in life expectancy, which has
doubled in the past 150 years [102, 103]. It was sup-
ported by a massive exploitation of fossil fuel energies
that greatly contributed to the increase in food produc-
tion, human reproduction, sport performances, lifespan
and human height among others [103, 104]. This pheno-
typic expansion – also called techno-physio evolution by
Fogel [105, 106]- comes at the expense of a major eco-
logical collapse that also affects health through pollutants,
climatic changes and resource depletion, thus limiting,
or even reversing, the expansion pattern. Major changes
in current policies should be rapidly taken in order to
limit such detrimental effects. Reversing sedentary behav-
ior through the promotion of physical and mental activity
and adopting a healthier lifestyle are beneficial strategies
that would help reduce the performance drop and pos-
sibly delay the appearance of chronic disease [53, 107–
109]. Finally, technological innovation, through pharma-
cology, robotic or neural prostheses may allow for an
increased recovery from injuries while delaying chronic
disease effects (Fig. 2a & b). Increased knowledge of the
biological mechanisms leading to performance decline in
cells and tissues through experimental research would
also allow for targeting new biochemical elements [110,
111] and additional strategies for altering the decrease in
performance. However, the performance decline is diffi-
cult to escape, even among well-trained athletes. If so,
multiple mechanisms associated with the generation of
multiple age-related diseases would be involved. It is clear
that metabolism is compromised at an early stage in
neurodegenerative diseases associated with ageing [112]
which may well be modifiable.
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