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Morphological organization of 
point-to-point transport in complex 
networks
Min-Yeong Kang1, Geoffroy Berthelot2,3,4, Liubov tupikina1,5, Christos Nicolaides  6,7,  
Jean-Francois Colonna2, Bernard sapoval1 & Denis s. Grebenkov  1

We investigate the structural organization of the point-to-point electric, diffusive or hydraulic transport 
in complex scale-free networks. the random choice of two nodes, a source and a drain, to which a 
potential difference is applied, selects two tree-like structures, one emerging from the source and 
the other converging to the drain. these trees merge into a large cluster of the remaining nodes that 
is found to be quasi-equipotential and thus presents almost no resistance to transport. such a global 
“tree-cluster-tree” structure is universal and leads to a power law decay of the currents distribution. Its 
exponent, −2, is determined by the multiplicative decrease of currents at successive branching points 
of a tree and is found to be independent of the network connectivity degree and resistance distribution.

Transport processes in complex networks play a crucial role in our lives, with examples ranging from transporta-
tion networks (e.g. airflight/train connections, international highways, and city transport), electricity distribution 
networks, microelectronic devices to news propagation and spreading of behaviors in social networks1–11,12. In 
engineering and biological applications, transport is often electric, hydrodynamic, or diffusive13–16. During the 
past two decades, a particular attention has been paid to random networks which can capture major structural 
properties of complex systems17–21. In particular, scale-free networks, in which the degree distribution follows 
a power law P(k) ∝ k−γ with an exponent γ, can model various systems with scaling properties such as citation 
patterns in science22, internet23, e-mail connections24, to name but a few. Scale-free networks display a variety 
of interesting transport features found in nature23,25. In particular, the global point-to-point flux Φ in a random 
scale-free resistor network between two arbitrarily chosen points was shown to obey a distribution with a power 
law tail: P(Φ) ∝ Φ−(2γ−1) 26,27. The degree exponent γ was linked to the scaling of the flux in the line-to-line trans-
port in a resistor network with multiple sources and drains28.

In a typical setting, a particle, an animal, a disease, a virus, a toxin, a signal or a rumor is released at one 
location and then spreads over the network. To get a theoretical insight onto this phenomenon, a first step is 
to consider the point-to-point transport between two arbitrary nodes, treated as a source and a drain. In this 
paper, we investigate the electric transport in a class of scale-free resistor networks, obeying Kirchhoff ’s laws or, 
equivalently, a Markov chain random walk on weighted graphs. This study reveals the structural organization of 
the nodes potentials and currents in the links. It is found that the density of currents, p(φ), decays at large φ as a 
power law with the universal exponent −2. This behavior is attributed to the arborescent structure of links that 
drive the currents from the source to the drain through a large quasi-equipotential (QEP) cluster of nodes. In other 
words, the transport between two selected nodes of a network is governed by two random trees, for which the 
exponent −2 can be justified by theoretical arguments.
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Results
A random scale-free network is constructed on an N × N square lattice. Its links are generated by using an uncor-
related configuration model29 with a given degree exponent γ. To get more insight onto the universal character of 
the point-to-point transport, we consider the resistance ri,j of each link as a function of the Euclidean distance di,j 
between the nodes i and j: = βr di j i j, , , with an exponent β. In an electric or hydraulic circuit, the resistance of a wire 
or a tube is proportional to its length, and β = 1. In turn, most former studies on transport in resistor networks 
supposed constant link resistance, i.e., β = 0 (see, e.g.26). In each random realization of the resistor network with 
prescribed exponents γ and β, we select randomly a source node and a drain node, at which the potential is fixed 
to be 1 and 0, respectively. The system of linear Kirchhoff ’s equations30 for the potential on other nodes is solved 
numerically using a custom routine in Matlab (see Methods section). Then the distributions of nodes potentials 
and currents in the links are obtained. While we keep using the terminology of electric circuits, the results are 
valid for diffusive and hydraulic transport as well.

Universal power-law distribution of currents. The first striking result is that the distribution of currents 
in a random scale-free resistor network follows a universal power law distribution, that is independent of the 
degree distribution exponent γ and the resistance-distance exponent β. Figure 1(a) shows that the density of cur-
rents is constant at small currents and then decays as a power law with the exponent −2. This probability density 
admits an excellent fit by the one-sided Cauchy distribution (for φ ≥ 0),
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where φm is the median current. Interestingly, the mean and the variance of this distribution are infinite for an 
infinite network, which is a reminiscent property of scale-free systems. The universal power law decay can poten-
tially be related to formerly studied betweenness measures in scale-free networks31–33. While the distribution is 
universal, the median current φm depends on the properties of the network (Table 1). The median current φm has 
a relatively weak dependence on γ, as compared to substantial changes of the properties of the scale-free network 
for various γ. The much stronger dependence on β results from a significant change of the length-dependent 
resistances: when β = 1, resistances are proportional to inter-node distances and are thus large (yielding small 
currents); in turn, for β = −1, the resistances are much smaller while the currents are larger. The deviations from 
the power law decay p(φ) ∝ φ−2 at large currents can be attributed to a finite size of the system. In fact, for any 
finite-size resistor network, the inter-node distances are bounded from above and below, and thus there exists a 
minimal resistance and a maximal current. As a consequence, the distribution of currents has a finite support 
bounded by a maximal cut-off. The cut-off value depends on the exponent β and the size N of the system, and 
increases as N → ∞. This is clearly seen on Fig. 1(b), which shows the density of currents rescaled by the median 
current φm for N = 50 and N = 100. The rescaling is needed to make closer the densities for two cases because the 
median current depends on the system size. One can see that the empirical density for the larger system remains 
close to the theoretical curve up to larger currents, i.e., the cut-off current is larger.

Morphological organization of the point-to-point transport. To get a deeper insight onto the 
above transport properties, we study the distribution of the nodes potentials. By construction, the potential var-
ies between 0 (the drain) to 1 (the source). Figure 2(a) shows an example of the potential distribution for one 

Figure 1. (a) The density of currents in links of a scale-free resistor network on a lattice 100 × 100, with γ = 3 
and three values of β. The empirical probability densities were first estimated from a set of currents in each 
random realization of the network and then averaged over 300 realizations. Symbols show the average values 
while errorbars indicate the average plus or minus the standard deviation. The bottom part of the errorbar is 
missing whenever the average minus the standard deviation is negative. The one-sided Cauchy density in Eq. (1)  
with the median currents from Table 1 is shown by solid lines. Dashed vertical lines indicate the median 
currents φm for each β. Similar results were obtained for other values of γ (not shown). (b) The empirical 
density of currents rescaled by the median current φm for a scale-free resistor network with γ = 3, β = 1, N = 100 
(full circles) and N = 50 (empty circles), as compared to the one-sided Cauchy density (solid line). Here, the 
empirical probability densities were obtained by merging local currents from 300 random realizations of the 
network to improve the statistics (errorbars are not available here).
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realization of the scale-free network with γ = 2.5 and β = 1. The most striking feature is the very peaked distri-
bution of potentials around a particular value (here, 0.43). In other words, the overwhelming majority of nodes 
share very close potentials and form thus a quasi-equipotential cluster, which works as an almost perfect con-
ductor. This analysis gives a more precise description of the so-called transport backbone26. While the particular 
value of the potential of the QEP cluster is specific to the network realization, the very strong concentration 
around this particular value is universal, being observed for other values of γ and β.

The structural organization of the point-to-point transport is visualized in Fig. 2(b,c). Here the nodes of a 
scale-free network are elevated in the vertical direction according to their potential. One can distinguish the QEP 
cluster (the region in the middle), and two arborescent structures, one rooted in the source at the top, and the 
other rooted in the drain at the bottom. The “terminal branches” of both trees are connected to the QEP cluster 
and can thus be considered as grounded to the potential of the QEP cluster. This structural organization allows 
one to treat the point-to-point transport on networks as a series connection of two random trees. As the electric 
properties of a tree can be determined via exact recursive computations (see below), this is a tremendous simpli-
fication of the original problem. We will show how this discovery brings new conceptual understanding of the 
point-to-point transport on networks and a rational for the observed universality in the currents distribution. The 
almost flat region of the density of currents in Fig. 1 can be attributed to the small currents in links between the 
numerous nodes and loops of the QEP cluster. In turn, the larger currents flow in two trees (see Fig. 2(b,c)) and 
produce a power law decay of the currents distribution. This is typical for a tree, in which the largest current in the 
trunk is progressively divided in a large number of smaller currents following the successive branching points. As 
both trees are connected to the QEP cluster, they can be treated independently.

Recursive computation for a tree. For an arbitrary resistors tree, in which all terminal branches are 
grounded (set to a potential V0) and a given potential V1 is applied to the root, the currents and potentials can 

γ\β 1 0 −1

1.5 0.56 0.27 1.26

2.0 1.21 0.58 2.48

2.5 2.02 0.92 4.14

3.0 2.40 1.16 5.00

4.0 2.99 1.52 5.77

5.0 3.52 1.73 6.58

6.0 3.74 1.91 6.95

×10−6 ×10−4 ×10−3

Table 1. The median current φm for different exponents γ and β. For each value of γ and β, the empirical 
distribution was obtained by merging currents from 300 random realizations of scale-free networks on a lattice 
100 × 100.

Figure 2. (a) Histogram of the nodes potentials (lattice 100 × 100, β = 1, and γ = 2.5). One observes that 
the overwhelming majority of nodes have almost identical potential. (b,c) Visualization of a point-to-point 
transport on a scale-free network (with a lattice 40 × 40, γ = 2.5 and β = 1; high resolution images are available 
online). Each node of the network is shown by a ball whose radius is proportional to the square root of its 
connectivity. The planar coordinates of the balls are the positions of the corresponding nodes on the square 
lattice, whereas the height Z is related to the potential at the node, either by a linear relation Z = V (b) or by 
a nonlinear relation Z ∝ sign(V − Vm)|V − Vm|1/2 (c), where Vm is the mode of the potential histogram, and 
rescaling is used to ensure that the bottom black ball at Z = 0 is the drain at fixed potential 0 and the top 
white ball at Z = 1 is the source at fixed potential 1. Such a nonlinear relation helps to dilate the QEP cluster 
to visualize its structure. Each link brightness is proportional to the magnitude of its current (in addition, 
blue colors are used for very small currents in panel (c)). The QEP cluster is qualitatively identified as a large 
ensemble of nodes almost at the same potential.
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be computed via an exact recursive procedure. In fact, for any terminal branch, one can identify its mother node 
and all sister nodes (Fig. 3). If r1, …, rm denote the resistances of the links from these terminal branches to their 
mother node, and r0 is the resistance of the link from the mother node to its mother node, then the overall resist-
ance of this group is simply R = r0 + 1/(1/r1 + … + 1/rm). As a consequence, this group of links can be replaced by 
a single effective link with the resistance R. Repeating this replacement procedure from the most distant terminal 
branches and progressing toward the root, we can compute the total resistance of the tree Rtree, from which we 
get the local current (V1 − V0)/Rtree at an effective link representing the whole tree, and the potential drops at the 
daughter nodes. Considering now each daughter node as the root of the corresponding subtree, one can repeat 
the computation. Descending recursively from the root to the most distant terminal branches, one evaluates all 
currents and potentials.

At any level, once the potential V at the mother of the mother node is evaluated for a given group, we can 
compute the current φ0 = V/R, the potential

φ′ = − = − =
+ + … +

V V r V r R V(1 / )
1

,r
r

r
r

0 0 0

m

0

1

0

and the currents φi = V′/ri at each link. If the resistances ri are comparable to each other, then the currents φi in 
the links to daughter nodes are approximately m + 1 times smaller than the current φ0, while the number of such 
currents is m times larger. Most importantly, due to the arborescent character of the structure, this reduction of 
currents is repeated multiplicatively at all branching levels. Therefore, the probability that the local current φ̂  at a 
randomly chosen link exceeds a prescribed value φ, is dominated by the relative fraction of links with the current 
of order φ, which is inversely proportional to φ. In other words,  φ φ φ≥ ∝ˆ{ } 1/ , from which the scaling φ−2 of 
the probability density p(φ) follows immediately. These qualitative arguments are confirmed by a more rigorous 
computation for some classes of random trees (see Methods section) and by numerical simulations for various 
random trees (see Fig. 4).

Discussion
The emergence of a “working tree” in a complex network is not a surprise since the currents follow the links that 
were built independently of the choice of source and drain. Starting for the source node, there exits a finite num-
ber of links leading to other nodes. At this stage there are no loops. Then starting from these new nodes, one finds 
new links but the probability of creating loops is very small because the great majority of the support sites are free 
for new links. This process builds progressively a tree structure up to the situation where loops are necessarily 
created when the number of tree sites is comparable to total number of support sites. This is why the numerical 
simulations shown in Fig. 4 have been limited to a total number of tree nodes between 1/10 and 1/3 of the total 
number of sites of the support lattice.

While our discussion was focused on electric currents and potentials, the discovered morphological organiza-
tion of point-to-point transport is relevant for other phenomena. For instance, steady-state diffusion of particles 
from a source to a sink is governed by the Laplace equation whose discretization on a given graph yields a set of 
linear equations similar to the Kirchhoff ’s equations. In this setting, electric potentials and currents are substi-
tuted by concentrations of particles and their fluxes, respectively. Moreover, when the source concentration is 

Figure 3. (a) Schematic representation of the two-sided arborescent structure created by applying potentials 
to two points: one tree is rooted in the drain at the bottom and includes nodes with distinct potentials, and the 
second random tree is rooted in the source on the top and also includes nodes with distinct potentials. The 
“terminal branches” of both trees are connected to the QEP cluster. If the latter is substituted by an equipotential 
one, the currents can be computed exactly by a recursive procedure. (b) Each step of the recursive procedure 
consists in substituting a group of nodes with resistances r0, r1, …, rm by an effective link with the overall 
resistance R. Repeating this step, one evaluates the total resistance and then all intermediate potentials and 
currents.
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set to 1, concentration at a given point can alternatively be interpreted as the splitting probability that a particle 
started from that point hits the source point before hitting the drain point. In other words, it characterizes the 
relative “accessibilities” of a source and a drain from different points of the graph34.

In summary, the application of a potential difference at two randomly chosen points of a scale-free network 
determines a transport structure composed of two random trees (rooted at these two points) connected through a 
quasi-equipotential cluster. Small currents between the nodes of this cluster form the plateau region of the density 
of currents. The arborescent character of the resistant part of this structure implies the multiplicative reduction 
of the currents in these trees and thus a power law decay of the density of currents with the universal exponent 
−2. Whatever the rules of construction of a scale-free network (e.g. the choice of β and γ), the density of currents 
exhibits the same decay. Note that similar structural organizations of the point-to-point transport are found 
in various natural and human-engineered complex systems: human vascular network (with an artery splitting 
progressively into numerous capillaries and then merging again to few veins), braided river networks35,36, water 
supply networks and irrigation systems (with one or several water intake stations supplying a branching network 
of pipes and then merging again to one or several sewage disposal points), to name but a few. Here, we showed 
that such a structural organization is formed spontaneously in a scale-free network by applying the potential 
difference to two arbitrary points. This observation is expected to help to understand the morphology, optimality, 
and robustness of natural point-to-point transport systems. An extension of this study to other types of complex 
networks such as small-world graphs, presents an interesting perspective for future research. More generally, 
our interpretation in terms of arborescent structure of links that drive the currents from source to drain through 
a large QEP cluster of nodes opens the door to aggregate conceptualizations of transport processes in complex 
networks.

Methods
Description of the numerical scheme. Numerical simulations of the scale-free resistor networks are 
performed using MATLAB 9.2 (R2017a). The source (potential set to 1) and drain (potential set to 0) nodes are 
randomly picked among nodes that are separated by a distance of at least 4 nodes. The system of linear Kirchhoff ’s 
equations30, excluding the source and drain nodes, reads in a matrix form as M × P = S, where P is the column 
vector of all N − 2 unknown potentials, M is the (N − 2) × (N − 2) matrix of coefficients, and S is the column vec-
tor of N − 2 elements, where each element corresponds to the total flow exiting the current node j and satisfying 
the conservation of mass equation. The system is solved using the typical “mldivide” (or backslash) operator in 
MATLAB, that computes the solution P using LU decomposition. Knowing the potential P, one can then compute 
the current for each link.

Computation of current distribution on a tree. We discuss two examples of trees for illustrating the 
general arguments of the main text about the distribution of currents.

First, we consider a regular tree with N levels of branching, in which each node (except the root) is divided 
into q daughter branches. We select the root node as the source and all terminal nodes as a drain. The correspond-
ence to the point-to-point transport can be made by merging this tree to its copy (“reflected tree”) by connecting 
pairwise all terminal nodes. In that case, the root of the reflected tree is set as the drain. The distribution of 
currents is the same in both cases due to the symmetry. As this network is deterministic, the currents are as well 
deterministic, so that one can understand the distribution of currents in terms of frequencies of observation of a 
given value of the current. Clearly, such a distribution is discrete.

Figure 4. The density of currents in random trees built by choosing randomly the node degrees from the degree 
distribution for several γ values (within a 100 × 100 lattice). To keep the total number of nodes in the trees in 
a range between 1000 and 3000, the number of generations G (i.e., the distance from the root to any terminal 
node), was assigned differently for different γ: G = 7 (γ = 2.5), G = 12 (γ = 3.5), G = 19 (γ = 4.5), and G = 27 
(γ = 5.5). Currents were computed by fixing the potential to 1 at the source and 0 at the the last generation 
nodes. All branches have unit resistance (i.e., β = 0). The density is obtained from a histogram of currents from 
300 realizations. Irrespective of γ values, the density of currents decays as a power law with an exponent −2, 
indicated with the straight line (the power law is terminated by a cut-off due to a finite size of the tree). The inset 
shows an example of a random tree with γ = 2.5.
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Due to the symmetry, currents in all branches of a given level are identical. If φ0 denotes the current in the root 
branch (of level 0), which is single by construction, then the current in any branch of the level n is just φ0/qn, 
where qn is the number of branches at this level. Then the probability (interpreted as the frequency of occurrence) 
for the current φ̂  in a randomly selected branch is

 φ φ= = =
+ + … + −

ˆP q q
q q

{ / }
1

,
(2)

n
n

n

N0 1

from which, denoting φ = φ0/qn, one has

 φ φ
φ φ

≥ = + + … + =
−

−
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{ } / 1
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Formally treating φ as a continuous variable, one finds that the corresponding probability density function 
bahaves as

φ φ φ
φ φ

= −
∂ ≥

∂
∝ .

ˆ
p( ) { } 1
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This computation can be extended a nonregular tree, in which the number qn of daughter branches depends 
on the branching level n. Repeating the above arguments, one gets

 φ φ≥ = + + + … + 

ˆ A q q q q q q{ } (1 ), (5)n1 1 2 1 2

where φ = φ0/(q1q2 … qn), and A = 1 + q1 + q1q2 + … + q1q2 … qN−1 is the normalization constant. Since all qn ≥ 2, 
one can easily prove that the last term, q1q2 … qn, provides the dominant contribution to this sum. In other words, 
the contribution of the remaining terms is either smaller or comparable to the last term. In fact, the following 
inequality holds

+ + + … + ≤ .− q q q q q q q q q1 (6)n n1 1 2 1 2 1 1 2

To prove it, one can divide both sides by q1q2 … qn−1 and check that
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As a consequence,  φ φ φ≥ ∝ˆ{ } 1/ , and thus one gets again the scaling exponent −2 for the current density.
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