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ABSTRACT 

Aim. To determine whether repeated maximal-intensity hypoxic exercise induces larger 

beneficial adaptations on the hypoxia inducible factor-1α pathway and its target genes than 

similar normoxic exercise, when combined with chronic hypoxic exposure.  

Methods. Lowland elite male team-sport athletes underwent 14 days of passive normobaric 

hypoxic exposure (≥14 h.day-1 at FiO2 14.5-14.2%) with the addition of six maximal-intensity 

exercise sessions either in normobaric hypoxia (FiO2 ~14.2%) (LHTLH; n = 9) or in normoxia 

(FiO2 20.9%) (LHTL; n = 11). A group living in normoxia with no additional maximal-

intensity exercise (LLTL; n = 10) served as control. Before (Pre), immediately after (Post-1), 

and 3 weeks after (Post-2) the intervention, muscle biopsies were obtained from the vastus 

lateralis.  

Results. Hypoxia inducible factor-1α subunit, vascular endothelial growth factor, myoglobin, 

peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and mitochondrial 

transcription factor A mRNA levels increased at Post-1 (all P≤0.05) in LHTLH, but not in 

LHTL or LLTL, and returned near baseline levels at Post-2. The protein expression of citrate 

synthase increased in LHTLH (P<0.001 and P<0.01 at Post-1 and Post-2, respectively) and 
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LLTL (P<0.01 and P<0.05 at Post-1 and Post-2, respectively), whereas it decreased in LHTL 

at Post-1 and Post-2 (both P<0.001).  

Conclusion. Combined with residence in normobaric hypoxia, repeated maximal-intensity 

hypoxic exercise induces short-term post-intervention beneficial changes in muscle 

transcriptional factors that are of larger magnitude (or not observed) than with similar 

normoxic exercise. The decay of molecular adaptations was relatively fast, with most of 

benefits already absent 3 weeks post-intervention. 

 

Key words. Hypoxia, physical exercise, maximal intensity, gene, protein, oxygen sensor 

system. 

 

INTRODUCTION 

Human skeletal muscle is a greatly specialized and a highly adaptive tissue. Increased oxygen 

(O2) consumption and/or a lowered tissue O2 tension (hypoxia) are known to initiate a cascade 

of systemic, local and cellular adaptations, all aiming to restore O2 homeostasis (Semenza, 

1999, Semenza, 1998). Whatever the origin of the hypoxic stimulus [i.e., exercise-induced 

(Ameln et al., 2005) or environmentally- (O2-deprived environments) (Hoppeler and Vogt, 

2001)], the hypoxia inducible factor-1α subunit (HIF-1α), an O2 sensitive transcriptional 

activator that stabilizes in the nucleus under hypoxic conditions, is the main factor mediating 

these responses (Wang and Semenza, 1995). HIF-1α is a key regulator responsible for the 

induction of hypoxia-induced genes (Ke and Costa, 2006) in turn involved in 

erythropoiesis/iron metabolism, angiogenesis, glucose metabolism as well as cell 

proliferation/survival and apoptosis (Lundby et al., 2009, Semenza, 1998, Semenza, 1999). 
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The current scientific literature indicates that prolonged hypoxic residence (≥10-12 h.day-1 for 

a minimum of 10 consecutive days) would only induce minimal adaptations in human skeletal 

muscle tissue. Specifically, down-regulation of HIF-1α (-49%) and its target genes [e.g., 

vascular endothelial growth factor (VEGF) (-66%)] (D’Hulst et al., 2016), absence of muscle 

angiogenesis as well as marginal changes in oxidative enzymes [e.g., citrate synthase (CS)] 

(Lundby et al., 2009) have been reported. Contrastingly, exercising in hypoxia appears 

appealing to promote structural and functional adaptations in skeletal muscle (Lundby et al., 

2009, Hoppeler and Vogt, 2001). While these changes have been reported to occur 

immediately after (within days post-intervention) the aforementioned hypoxic interventions, 

the extent to which delayed (after several weeks) positive muscle phenotype adaptations also 

occur is unknown. 

While chronic low-intensity ‘aerobic’ exercise in hypoxia may evoke cellular adaptations via 

HIF-1α activation (Vogt et al., 2001, Zoll et al., 2006), the magnitude of these responses 

likely depends on the hypoxic dose (Lundby et al., 2009), and may not necessarily translate in 

substantial physical performance benefits in endurance individuals (Lundby et al., 2012, 

Roels et al., 2007, Truijens et al., 2003). Interestingly, it has been postulated that exercise 

intensity in hypoxia per se modulates muscle molecular mechanisms of O2 homeostasis with 

‘adaptations that compensate for the reduced availability of O2 during exercise’ (Hoppeler 

and Vogt, 2001). Reportedly, maximal-intensity hypoxic exercise, where short ‘all-out’ 

efforts (≤ 10 s) with incomplete recoveries (< 30 s) are repeated (namely repeated sprints in 

hypoxia or RSH), induces additional molecular adaptations at the skeletal muscle level 

compared to similar exercise in normoxia (RSN) (Faiss et al., 2013b). Specifically, the 

mRNA expression of genes involved in O2 signaling (HIF-1α), O2 carrying [myoglobin (Mb)] 

and pH regulation [carbonic anhydrase-3 (CA-3)] were up-regulated after RSH but not after 

RSN. Nonetheless, the observation of a concomitant down-regulation of genes involved in 
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mitochondrial biogenesis [mitochondrial transcription factor A (TFAM) and peroxisome 

proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α)] after RSH would 

suggest a shift from aerobic to anaerobic glycolytic activity in the muscle and a more efficient 

use of fast-twitch (FT) muscle fibers (Faiss et al., 2013a, Faiss et al., 2013b, Puype et al., 

2013).  

We recently demonstrated that the combination of the ‘live high-train low’ (LHTL) paradigm 

and RSH, namely ‘live high-train low and high’ (LHTLH), produces superior short- (2-3 days 

post-intervention) and long-term (3 weeks post-intervention) performance benefits (i.e., 

repeated-sprint ability and high-intensity intermittent exercise capacity) than when LHTL and 

RSN are combined (Brocherie et al., 2015). While short- and long-term hematological 

adaptations (e.g., increase in hemoglobin mass) were similar between these two training 

interventions, twice larger immediate repeated-sprint performance gains associated with 

LHTLH (which were also maintained after 3 weeks with this training regimen only) advocate 

that non-hematological factors outside the role played by O2 carrying-capacity are probably 

more robust to explain why LHTLH maximizes performance changes. Thus, chronic hypoxic 

exposure in combination with repeated maximal-intensity hypoxic exercise (LHTLH) appears 

as a promising intervention to induce concomitant hematological and molecular adaptations. 

To date, however, changes in skeletal muscle molecular mechanisms of O2 homeostasis in 

response to LHTLH remain undetermined.  

Therefore, the purpose of this study was to investigate the immediate (i.e., few days post-

intervention) and delayed (i.e., several weeks post-intervention) skeletal muscle molecular 

adaptations associated with 14 days of passive normobaric hypoxic exposure combined with 

RSH (LHTL+RSH, namely LHTLH) or RSN (LHTL+RSN, namely LHTL) [both compared 

to a control condition, i.e., ‘live low-train low’ (LLTL)]. Our hypothesis was that, when 

combined with passive normobaric hypoxic residence, repeated maximal-intensity hypoxic 
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exercise induces immediate post-intervention muscle molecular adaptations – i.e., HIF-1α 

pathway and its target genes – not observed (or to a lower extent) with similar normoxic 

exercise. We also expected that the molecular adaptations would be maintained for a longer 

period when combining passive normobaric hypoxic residence with repeated maximal-

intensity hypoxic exercise compared to the other conditions tested. This is the first study to 

investigate the effects of prolonged passive normobaric hypoxic exposure with superimposed 

repeated maximal-intensity exercise sessions in hypoxia (LHTLH) vs. normoxia (LHTL) on 

molecular adaptations in human skeletal muscle.  

 

MATERIALS AND METHODS 

Subjects 

Thirty lowland elite male field hockey players (age 25.1 ± 4.5 years, height 177.8 ± 5.6 cm, 

body weight 75.2 ± 7.7 kg and estimated VO2max 52.0 ± 1.9 mL.min-1.kg-1) were recruited 

among Belgium, Spanish and Dutch first division clubs to participate in this study.  

The subjects were fully informed of the possible risks involved in the study before providing 

written consent. The study was approved by the Anti-Doping Lab Qatar institutional review 

board (Agreement SCH-ADL-070) and was conducted according to the Helsinki Declaration. 

Exclusion criteria for participation were acclimatization or exposure to hypoxia of more than 

2000 m for more than 48 h during a period of 6 months before the study, and any history of 

altitude-related sickness and health risk that could compromise the subject’s safety during 

exercise and/or hypoxia exposure. During the study, two subjects (control group: n = 1; 

experimental groups: n = 1) were excluded due to injury. 
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Procedures 

The experimental design and physical performance results have been described in details 

elsewhere (Brocherie et al., 2015). Briefly, it consisted in three testing sessions conducted 

before (Pre-), 2-3 days (Post-1) and three weeks (Post-2) following the 14-days intervention 

period. After the completion of Pre-, subjects were randomly assigned to one of the three 

following groups: 14 days of residence in normobaric hypoxia (≥14 h.day-1 at 2800-3000 m, 

inspired oxygen fraction (FiO2) 14.5-14.2%) during which subjects exercised (i.e., regular 

field hockey practices) at sea level with the addition of six repeated maximal-intensity 

exercise sessions either in normobaric hypoxia simulating an altitude of 3000 m 

(LHTL+RSH, namely LHTLH; n = 8) or in normoxia (LHTL+RSN, namely LHTL; n = 11) 

and control (LLTL; n= 9) where subjects did not performed any additional specific exercise. 

Importantly, this research was successfully run in a double-blinded, controlled manner 

(Brocherie et al., 2015).  

 

Living hypoxic exposure. The sleeping and recreational hypoxic facilities were fully 

furnished normobaric hypoxic rooms with O2-filtration membrane that reduces the molecular 

concentration of O2 in ambient air (CAT system, Colorado Altitude Training, Louisville, 

Colorado, USA). The two intervention groups (LHTLH and LHTL) were exposed (i.e., from 

22:00 to 07:00, from 08:00 to 10:00 and again from 13:00 to 16:00; and were encouraged to 

spend more time in if desired) to a normobaric hypoxia equivalent to 2500 m (FiO2 15.1%, BP 

768.0 mmHg, PiO2 108.3 mmHg) for the first 24 h of the intervention period (day 1). 

Thereafter, the O2 fraction was further decreased to the equivalent of 2800 m (FiO2 14.5 ± 

0.1%, BP 766.8 ± 1.1 mmHg, PiO2 104.5 ± 0.6 mmHg; days 2-5) and 3000 m (FiO2 14.2 ± 

0.1%, BP 765.3 ± 1.5 mmHg, PiO2 101.7 ± 0.8 mmHg; days 6-14). Concentrations of ferritin 
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(155.2 ± 78.7 μg.L-1, range: 45-279 μg.L-1) and soluble transferrin receptor (256.6 ± 33.7 

mg.dL-1, range: 202-330 mg.dL-1) measured during the 2-weeks lead-in period at sea level 

indicated that none of the subjects was iron deficient at the commencement of the study.  

 

Supervised exercise protocol. In addition to their usual field hockey practices and matches 

[carefully monitored and reported in (Brocherie et al., 2015)], subjects of the two intervention 

groups (LHTLH and LHTL) completed six specific repeated maximal-intensity exercise 

sessions (with at least 36 h in between) on a synthetic grass ground, inside a 45-m long 

mobile inflatable simulated hypoxic equipment (Altitude Technology Solutions Pty Ltd, 

Brisbane, Queensland, Australia), as described elsewhere (Girard et al., 2013). For RSH, 

ambient air was mixed with nitrogen (from pressurized tanks) to reduce FiO2 to ~14.2% in 

order to simulate an altitude of 3000 m. In order to blind subjects to altitude, the system was 

also run for RSN with normoxic airflow (FiO2 21.0%) into the tunnel.  

Each session lasted ~50 min including a 15-min warm-up, the repeated maximal-intensity 

exercise and a 10-min recovery phase (i.e., a total of 300 min for the 6 sessions among the 14-

days intervention). Specifically, the repeated maximal-intensity exercise included 4 sets of 5 × 

5-s maximal sprints interspersed with 25 s of passive recovery with 5 min of standing rest 

between sets.  

 

Muscle Biopsy Samples 

Biopsy samples were all taken by the same experienced medical doctor with a 5-mm 

Bergström type needle (in conjunction with a suction device to create a negative pressure) in 

the mid portion of the vastus lateralis muscle after local anesthesia (1% xylocaine, 
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subcutaneously). Biopsies were preceded by 48 h without any exercise activity and were 

taken randomly in opposite legs (i.e., left-right-left or vice versa) during subsequent test 

sessions. For mRNA analysis, the muscle tissue portion was immediately frozen in liquid 

nitrogen and stored at -80°C until required for analyses.  

 

Western blotting  

Frozen muscle tissue (~20 mg) was homogenized 3 × 5 s with a Tissuelyser (Qiagen, Hilden, 

Germany) in an ice-cold buffer (1:10, w/v) [50 mM Tris-HCl pH 7.0, 270 mM sucrose, 5 mM 

EGTA, 1 mM EDTA, 1 mM sodium orthovanadate, 50 mM glycerophosphate, 5 mM sodium 

pyrophosphate, 50 mM sodium fluoride, 1 mM DTT, 1 % Triton-X 100 and a protease 

inhibitor cocktail (Roche Applied Science, Vilvoorde, Belgium)]. After centrifugation of 

homogenates at 10 000 g for 10 min at 4°C, the supernatants were stored at -80°C. Protein 

concentration was measured using the DC protein assay kit (Bio-Rad laboratories, Nazareth, 

Belgium) with bovine serum albumin as a standard. Proteins (30-50 µg) were separated by 

SDS-PAGE (7.5 – 12.5%) and transferred to PVDF membranes. Subsequently, membranes 

were blocked with 5% non-fat milk for 1 h and incubated overnight (4°C) with the following 

antibodies: glucose transporter 4 (GLUT-4, #PA1-1065, Thermo Scientific, Erembodegem, 

Belgium), phosphofructo kinase (PFK, #166722, Santa Cruz, Huissen, The Netherlands), 

monocarboxylate transporter-1 (MCT-1, #AB3538P, Millipore, Overijse, Belgium), 

monocarboxylate transporter-4 (MCT-4, #AB3316P, Millipore), CA-3 (#135995, Abcam, 

Cambridge, UK), AMP-activated protein kinase alpha (AMPKα, #2532, Cell Signaling, 

Leiden, The Netherlands), phospho-AMPKα Thr172 (#2535, Cell Signaling), CS (#14309, 

Cell Signaling), eukaryotic elongation factor 2 (eEF2, #2332, Cell Signaling). Appropriate 

horseradish peroxidase-conjugated secondary antibodies (Sigma-Aldrich, Bornem, Belgium) 
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were used for chemiluminescent detection of the proteins of interest. Membranes were 

scanned and quantified with Genesnap and Genetools softwares (Syngene, Cambridge, UK), 

respectively. The results are presented as the ratio protein of interest/eEF2 or as the ratio 

phosphorylated/total form for AMPK.  

 

Real-time quantitative Polymerase Chain Reaction 

RNA was extracted using TRIzol (Invitrogen, Vilvoorde, Belgium) from 20–25 mg of frozen 

muscle tissue. RNA quality and quantity were assessed by spectrophotometry with a 

Nanodrop (Thermo Scientific, Erembodegem, Belgium). One µg of RNA was reverse-

transcribed using the High-Capacity cDNA Reverse Transcription kit (Applied Biosystems, 

Gent, Belgium) according to manufacturer’s instructions. A SybrGreen-based master mix 

(Applied Biosystems, Erembodegem, Belgium) was used for real-time PCR analyses using 

the ABIPRISM 7300 (Applied Biosystems). Real-time PCR primers were designed for human 

HIF-1α, PHD-2 (prolyl hydroxylase domain protein 2), VEGF, Mb, cytochrome c oxidase 

subunit 4 isoform 1 (COX-4_1) and isoform 2 (COX-4_2), PGC-1α, TFAM, endothelial nitric 

oxide synthase (eNOS), neuronal nitric oxide synthase (nNOS), pyruvate dehydrogenase 

kinase 1 (PDK-1), glucose transporter 1 (GLUT-1) and, phosphofructokinase (PFK)  (Table 

1). Thermal cycling conditions consisted of 40 three-step cycles including denaturation of 30 

s at 95°C, annealing of 30 s at 58°C and extension of 30 s at 72°C. All reactions were 

performed in triplicate. To compensate for variations in input RNA amounts and efficiency of 

reverse transcription ribosomal protein L19 (RPL19) and beta-2-microglobulin (B2M) mRNA 

were quantified, and results were normalized to these values. These genes were chosen out of 

three normalization genes using the GeNorm applet according to the guidelines and 

theoretical framework described elsewhere (Vandesompele et al., 2002).  
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Citrate synthase activity 

Five μg of protein were added to the reaction buffer containing 100 mM Tris base, 2 mM 

EDTA, 1.25 mM malate, 0.25 mM NAD and 6 U.ml-1 L-malate dehydrogenase 

(10127256001, Roche, Brussels, Belgium). The temperature was set at 37˚C and the reaction 

started by the addition of acetyl-CoA. NADH production was measured by fluorescence (340 

nm excitation, 460 nm emission).  

 

Data and statistical analysis 

Because of large inter-individual differences in absolute  mRNA levels and protein 

expressions, post-intervention values are expressed as percent changes in means (Pre- vs. 

Post-1 and Post-2, respectively), while the mean of the Pre- values was assigned to the 

arbitrarily value of 1.00±0.00. Two-way ANOVA with repeated measures [Time (Pre- vs. 

Post-1 vs. Post-2) × Group (LHTLH vs. LHTL vs. LLTL)] was used to compare each 

measured variable. When significant modifications were found, Holm-Sidak post-hoc test was 

performed to localize the effect. All analyses were made using Sigmaplot 11.0 software 

(Systat Software, CA, USA). Null hypothesis was rejected at P < 0.05. 

 

RESULTS 

Skeletal muscle mRNA expression analysis and enzyme activity 

Figures 1, 2 and 3 and Table 2 display changes from Pre- to Post-1 and Post-2 in mRNA and 

protein expression/activity levels in the three groups. 
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O2 signaling. Compared to Pre-, HIF-1α mRNA levels increased at Post-1 (P < 0.01) in 

LHTLH only, before returning to near Pre- values at Post-2 (Fig. 1). At Post-1, higher HIF-1α 

mRNA levels were observed in LHTLH compared to LHTL and LLTL (both P < 0.05). 

O2 carrier. Compared to Pre-, higher mRNA levels of VEGF (P = 0.05) and Mb (P < 0.05) 

occurred at Post-1 in LHTLH (Fig. 1). At Post-1, VEGF and Mb values were also higher in 

LHTLH than in LLTL (both P < 0.05). 

Mitochondrial biogenesis and metabolism. Transcript levels of regulators of mitochondrial 

biogenesis PGC-1α (P < 0.05 at Post-1) and TFAM (P < 0.05 at Post-1 and Post-2) were 

increased in LHTLH only. No significant changes were detected in COX-4_1 and COX-4_2 

mRNA levels. The protein expression of CS increased in LHTLH (P < 0.001 at Post-1 and P 

< 0.01 at Post-2) and LLTL (P < 0.01 at Post-1, and P < 0.05 at Post-2), whereas it decreased 

in LHTL (P < 0.001 at Post-1 and Post-2) (Fig. 2). Similar results were obtained for CS 

activity (Table 2). 

Nitric oxide synthase pathway. Compared to Pre-, eNOS and nNOS mRNA levels tended to 

increase at Post-1 in LHTLH (P = 0.30 and P = 0.09, respectively) (Fig. 1). In LHTL, only 

eNOS mRNA levels increased significantly from Pre- to Post-1 (P < 0.01), while values of 

both eNOS and nNOS were higher at Post-2 vs. Pre (both P < 0.05). The mRNA levels of 

eNOS at Post-1 were higher in LHTLH and LHTL compared to LLTL (both P < 0.05). 

pH regulation. The protein expression of MCT-1, but not of MCT-4 and CA-3, was increased 

in LHTLH (P < 0.05) and LHTL (P < 0.05) at Post-1 in reference to Pre- (Figs. 2 and 3). 

Whereas MCT-1 at Post-2 returned to near Pre- values in LHTLH, lower values were 

observed from Pre- to Post-2 in LHTL (P < 0.05).  

Glucose metabolism. At Post-1, the mRNA levels of GLUT-1 were higher in LHTLH 

compared to Pre- (Fig. 1, P < 0.05) while the protein expression of PFK was lower in LHTLH 
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compared to LLTL (Figs. 2 and 3, P < 0.05). No changes were measured in the protein 

expression levels of GLUT-4 (Figs. 2 and 3). 

AMPK total protein content and phosphorylation status. Compared to Pre-, AMPK total 

protein content (P < 0.01 for LHTLH and LHTL) and pAMPK-tot (P < 0.001 for LHTLH and 

LHTL) increased significantly at Post-1, whereas lower pAMPK-tot values were noted at 

Post-2 (P < 0.01 and < 0.001 for LHTLH and LHTL, respectively) (Figs. 2 and 3).  

 

DISCUSSION 

This is the first study to investigate the effects of prolonged passive exposure to normobaric 

hypoxia with superimposed repeated maximal-intensity exercise sessions in hypoxia 

(LHTLH) vs. normoxia (LHTL) on molecular regulations in human skeletal muscle. The 

novel findings are that LHTLH elicits higher short-term (first few days post-intervention) 

molecular responses of factors implicated in the regulation of O2 signaling and carrying, 

mitochondrial biogenesis, as well as of enzymes implicated in mitochondrial metabolism 

compared to LHTL [with also no change in control (LLTL)]. We further indicate that the 

majority of these positive molecular responses disappeared already three weeks post-

intervention. We confirm our hypothesis of larger specific transcriptional responses when 

passive normobaric hypoxic exposure and repeated maximal-intensity hypoxic exercise are 

combined, yet with normalization of molecular adaptations three weeks after the intervention. 

These adaptations in O2 signaling and transport, mitochondrial biogenesis, as well as in 

enzymes implicated in mitochondrial metabolism, may contribute to the sport-specific 

performance gains (Post-1) reported elsewhere (Brocherie et al., 2015). The functional 

benefits (e.g., performance gains) were maintained up to 3 weeks post-LHTLH (Brocherie et 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

al., 2015) and were likely caused by the molecular adaptations which may have promoted 

changes in muscle biochemistry and vascularity.  

 

O2 signaling and gene regulation 

In the present study, the level of HIF-1α mRNA increased immediately after the intervention 

in LHTLH but, unexpectedly, it was not the case for LHTL. First, the absence of HIF-1α 

increase after 14 days of LHTL supports the hypothesis that HIF-1α response to hypoxia is 

time-dependent and activated shortly and briefly after hypoxic stimulus exposure (Lundby et 

al., 2009). Accordingly, it has been previously demonstrated that HIF-1α protein levels peak 

within the first hours of hypoxic exposure then progressively decline toward basal levels 

(Stroka et al., 2001, Vigano et al., 2008), suggesting a possible local or systemic 

‘acclimatization’ after several days (Lundby et al., 2009). As the protein level of HIF-1α is 

only briefly increased after a hypoxic stimulus and our intention was to determine stable 

molecular changes after repeated expositions to hypoxia, we solely quantified the mRNA 

level of this transcription factor, which reflects the long-term activation of the HIF-1α 

pathway (Galban and Gorospe, 2009). With this in mind, the enhanced mRNA level of HIF-

1α after LHTLH clearly suggests that the addition of repeated maximal-intensity exercise in 

hypoxia (but not in normoxia) plays an important role for up-regulating the activation of the 

HIF-1α pathway and some of its downstream genes (Zoll et al., 2006, Vogt et al., 2001, Faiss 

et al., 2013b). This is further supported by the return to near HIF-1α mRNA Pre- values at 3 

weeks post-intervention when no additional repeated maximal-intensity exercises and/or 

hypoxic stimulation were performed. 

Activation of HIF-1α is known to lead to cellular adaptations [i.e., O2 carrying-capacity 

(Wenger and Gassmann, 1997), neovascularization (Forsythe et al., 1996), glucose oxidation 
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(Wenger and Gassmann, 1997)], which in turn would positively influence exercise capacity in 

humans (Vogt et al., 2001, Zoll et al., 2006, Faiss et al., 2013b). Accordingly, the mRNA 

levels for the capillary growth factor VEGF, i.e., an HIF-1-regulated gene (Semenza, 1999, 

Semenza et al., 1999, Wenger and Gassmann, 1997) and Mb mRNA, significantly increased 

after LHTLH, whereas no changes were observed in both LHTL and LLTL. This corroborates 

previous works, which demonstrated Mb mRNA or protein levels enhancement after hypoxic 

endurance exercise [i.e., 3-5 sessions of intermittent hypobaric (~2300 m) or normobaric 

hypoxic (~3850 m) training per week for 4-6 weeks (Vogt et al., 2001, Terrados et al., 1990)]. 

Overall, it seems that these RSH-related molecular adaptations were not blunted by the 

passive normobaric residence and may participate in the twice-larger repeated-sprint 

performance improvements observed in LHTLH vs. LHTL (Brocherie et al., 2015).  

 

Metabolic Phenotype 

After hypoxic endurance exercise, it has been demonstrated that mRNA levels for PGC-1α 

(Zoll et al., 2006), COX-1, COX-4 and CS (Zoll et al., 2006, Vogt et al., 2001, Terrados et al., 

1990) increase to a greater extent compared to similar intervention in normoxia. In the present 

study, LHTLH induced larger mitochondrial adaptations (i.e., increased mRNA levels for 

PGC-1α and TFAM) compared to LHTL and LLTL, thereby suggesting a preponderant role 

of the superimposed RSH for muscle phenotypic adaptations. Whereas the protein expression 

and protein activity of CS decreased after LHTL, it increased after both LHTLH and LLTL. 

Conversely, when used in isolation (i.e., with normoxic residence), Faiss et al. (Faiss et al., 

2013b) indicated that RSH induced a down-regulation in mitochondrial biogenesis (PGC-1α 

and TFAM), despite unchanged oxidative capacity (CS). Some methodological differences 

(i.e., exercise mode, frequency and duration) between studies might be responsible for these 
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discrepant findings. In summary, the increase in PGC-1α and TFAM measured after 

intervention in LHTLH, for which mRNA expression predicts protein levels quite well 

(Collu-Marchese et al., 2015, Handschin et al., 2003), appears also as a plausible molecular 

explanation for the beneficial adaptations observed in LHTLH vs. LHTL vs. LLTL. 

 

Compensatory vasodilation 

Among the HIF-1α target genes, VEGF is a critical signal in vascular remodeling, which 

maintains vascular integrity and stimulates the production of the vasodilatory mediator nitric 

oxide. Hence, eNOS plays a key role in blood flow regulation and vascular tone (Gielen et al., 

2011). Concomitantly, nNOS expression exerts a functionally significant effect in hypoxic 

tissue, thereby influencing tissue O2 delivery (Fish et al., 2007, Tsui et al., 2014), ventilatory 

regulation and metabolic adaptations to hypoxia (Gardiner et al., 2011). Although we did not 

measure the protein expression, an increase in eNOS and nNOS may promote changes in the 

blood flow and vascular tone (Gielen et al., 2011), participate in angiogenesis (Viboolvorakul 

and Patumraj, 2014) and enhance O2 delivery.  

 

pH-regulating System 

In line with previous sprint interval intervention studies (Puype et al., 2013, Burgomaster et 

al., 2007), LHTLH and LHTL increased muscle MCT-1 protein content, whereas MCT-4 and 

CA-3 contents did not change. This potential up-regulation of lactate metabolism may reflect 

the similar sport-specific aerobic performance gains observed in LHTLH and LHTL 

(Brocherie et al., 2015).  
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Delayed effects on skeletal muscle transcriptional regulation 

We recently demonstrated that LHTLH and LHTL resulted in similar short-term (2-3 days 

post-intervention) hematological adaptations (i.e., increase in hemoglobin mass) that were 

maintained for at least 3 weeks post-intervention (Brocherie et al., 2015). Contrastingly, our 

novel findings indicate that most of the transcriptional adaptations were back to near Pre- 

values 3 weeks post-intervention. The present study is the first to show the time course of 

HIF-1α and related genes transcription in human skeletal muscle adaptations following 

residence in normobaric hypoxia superimposed with repeated maximal-intensity exercise in 

hypoxia or normoxia. With the post-intervention carefully supervised and controlled (i.e., 

similar between groups), the fact that this period did not include any environmental hypoxic 

stress – be it during residence or exercise in normobaric hypoxia – indicates that the lack of 

external hypoxic ‘stimulus’ could be responsible for the rapid reversal of skeletal muscle 

transcriptional regulation. Meanwhile, it may have already promoted some beneficial muscle 

function adjustments and therefore functional benefits without affecting hemoglobin mass 

improvement (Brocherie et al., 2015). Additionally, as the post-intervention period (3 weeks) 

did not include any repeated maximal-intensity exercise session (as performed six times 

during the 14-days intervention), the influence of such exercise modality and/or frequency on 

normalization of molecular responses should not be overlooked. One aspect that deserves 

more research attention is whether additional hypoxic stress and/or intense exercise when 

individuals return to sea level after an hypoxic intervention induces a better maintenance of 

molecular adaptations. The decay of molecular responses over time after return to sea level, 

that occur more rapidly than the hematological adaptations, would suggest that mechanisms 

(not measured here) such as those involved in the factor-inhibiting HIF regulation (Lindholm 

and Rundqvist, 2016) may be at play. 
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Strengths and limitations 

One potential strength of this study is that elite field hockey players volunteered to 

participate, while mechanistic studies are generally carried out with recreational participants. 

In these studies, results are often extrapolated to elite athletes while exercise-related 

adaptations are probably less prominent as the level of practice/performance increases. Here, 

we found that LHTLH was the most efficient strategy to activate in the short-term the 

transcription of specific genes involved in key physiological processes for adaptations such as 

angiogenesis or O2 transport. It is therefore tempting to associate the molecular regulations we 

measured at Post-1 and the enhanced performance that we previously reported at both Post-1 

and Post-2 in LHTLH (Brocherie et al., 2015).  

Methodologically, it is known that most gene expressions generally peak within 2-8 h after a 

single exercise stimulus (Pilegaard et al., 2003). Although we acknowledge that short-term 

(hours) molecular responses are the basis for long term structural, enzymatic and functional 

adaptations, we are confident that, with muscle biopsies obtained 48 h following the last 

exercise session in our subjects, the augmented expression of several genes actually is the 

result of the proposed intervention per se, and not a side effect of the final exercise session. 

Despite careful control of biopsy sampling (i.e., no physical activity allowed between the last 

exercise session, similar sampling timing between 08:00 and 10:00 a.m. during the three test 

sessions and corresponding samples ran in the same assay) (Fluck et al., 2005), a large inter-

subject gene and protein expression variation occurred here. Potentially, this may be 

explained by: (i) DNA sequence variations resulting from HIF-1α gene polymorphism in the 

promoter region of HIF-1α gene (Prior et al., 2006), (ii) fiber type differences in the sampling 

from vastus lateralis muscle, which has an unequal typology and metabolic properties (Pette, 

1985), (iii) pulsative nature of gene expression in muscular fiber (Newlands et al., 1998), and 

(iv) involvement of reactive oxygen species in the regulation of HIF-1α mRNA and HIF-1α 
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target genes (Pialoux et al., 2009). That said, it is worth mentioning that biopsies obtained 

alternatively from the left and right vastus lateralis muscle actually give similar mRNA 

expression profiles when the two legs are compared (Lundby et al., 2005). 

 

In conclusion, combined with normobaric hypoxic residence, repeated maximal-intensity 

hypoxic exercise elicited higher short-term (first few days post-intervention) skeletal muscle 

molecular beneficial adaptations not observed (or with smaller magnitudes) after similar 

normoxic exercise. The large and specific adaptations in mRNA levels of factors involved in 

O2 signaling and transport, mitochondrial biogenesis, as well as in enzymes implicated in 

mitochondrial metabolism, are seen to highlight the prominence of superimposed repeated 

maximal-intensity hypoxic exercise, yet with a rapid decay and normalization of molecular 

adaptations after cessation of the intervention.  
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Table 1. PCR Primers sequences. 

Gene Forward Primer Reverse Primer 

HIF-1α GCCCCAGATTCAGGATCAGA TGGGACTATTAGGCTCAGGTGAAC 

PHD-2 AGGTGAAGCCAGCCTAT CCTGATGCTAGCTGATACTTG 

VEGF TTTCTGCTGTCTTGGGTGCATTGG ACCACTTCGTGATGATTCTGCCCT 

Mb GCCACCAAGCACAAGATC GGCATCAGCACCAAAGT 

COX-4_1 GAGAGCTTTGCTGAGATGAA CCGTACACATAGTGCTTCTG 

COX-4_2 CCTTCTGCACAGAACTCAAC CGGTACAAGGCCACCTTT 

PGC-1α GGGATGATGGAGACAGCTATGG CTCTTGGTGGAAGCAGGGTC 

TFAM AGCGTTGGAGGGAACTTCCTGATT TTCTTTATATACCTGCCACTCCGCCC

eNOS CAGTTACCAGCTAGCCAAAGT CTCATTCTCCAGGTGCTTCAT 

nNOS CAGAACTCACACAAGGTCTATC GTTGACCGACTGGATTTAGG 

PDK-1 TGCCCATATCACGTCTTTAC GTCTGTTGACAGAGCCTTAAT 

GLUT-1 CCTGCAGTTTGGCTACAACA GTGGACCCATGTCTGGTTG 

PFK ATTTGACGAAGCCCTGAAG GTGCGAACCACTCTTAGATAC 

RPL19 CGCTGTGGCAAGAAGAAGGTC GGAATGGACCGTCACAGGC 

B2M ATGAGTATGCCTGCCGTGTGA GGCATCTTCAAACCTCCATG 

 

Table 2. Citrate synthase protein activity. 

 LHTLH LHTL LLTL 

Pre- 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 

Post-1 1.19 ± 0.27*,† 0.82 ± 0.25  1.22 ± 0.25*,† 

Post-2 1.20 ± 0.31†  0.79 ± 0.32* 1.35 ± 0.22***,† 

* P < 0.05 *** P < 0.001 significantly different from Pre-; P < 0.05 † significantly 

different from LHTL. 
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Figures Legend  

Figure 1. Relative changes in selected mRNA expression markers from before (Pre-) to 

immediately (Post-1) and 3 weeks (Post-2) after the intervention. The intervention consisted 

in 14-days of passive normobaric hypoxic exposure combined with (a) repeated maximal-

intensity hypoxic exercise in hypoxia (LHTLH) or (b) normoxia (LHTL). (c) A control group 

followed a ‘live low-train low’ (LLTL) protocol. Black and grey bars represent Post-1 and 

Post-2 values of mRNA concentrations in vastus lateralis muscle, respectively. These values 

were normalized to baseline values (Pre-), which were set to 1.00±0.00 (dashed line). Values 

are means ± SD. * P < 0.05, ** P < 0.01 vs. Pre-intervention; # P < 0.05 vs. LLTL and † P < 

0.05 vs. LHTL. HIF-1α, hypoxia inducible factor-1a; PHD-2, prolyl hydroxylase domain 

protein 2; VEGF, vascular endothelial growth factor; Mb, myoglobin; PGC1-α, proliferator-

activated receptor gamma coactivator-1α; TFAM, mitochondrial transcription factor A; COX-

4_1, cytochrome oxidase 4 isoform 1; COX-4_2, cytochrome oxidase 4 isoform 2; PDK-1, 

pyruvate dehydrogenase kinase 1; GLUT-1, glucose transporter 1; PFK, phosphofructokinase; 

eNOS, endothelial nitric oxide synthase; nNOS, neuronal nitric oxide synthase. 

 

Figure 2. Relative protein expression of selected markers from baseline (Pre-) to the end of 

the intervention (Post-1) and after 3 weeks (Post-2). The intervention consisted in 14-days of 

passive normobaric hypoxic exposure combined with (a) repeated maximal-intensity hypoxic 

exercise in hypoxia (LHTLH) or (b) normoxia (LHTL). (c) A control group followed a ‘live 

low-train low’ (LLTL) protocol. Black and grey bars represent Post-1 and Post-2 values of 

protein concentrations in vastus lateralis muscle, respectively, and were normalized to 

baseline values (Pre-), which were set to 1.00±0.00  (dashed line). Values are means ± SD. * 

P < 0.05, ** P < 0.01, *** P <0.001, vs. Pre- and # P < 0.05, ## P < 0.01 vs. LLTL. CS, 
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citrate synthase; MCT-1, monocarboxylate transporter 1; MCT-4, monocarboxylate 

transporter 4; CA-3, carbonic anhydrase III; GLUT-4, glucose transporter 4; PFK, 

phosphofructokinase; AMPK, AMP-activated protein kinase. 

 

Figure 3. Representative Western blots showing the content of selected proteins from baseline 

(Pre-) to the end of the intervention (Post-1) and after 3 weeks (Post-2). The intervention 

consisted in 14-days of passive normobaric hypoxic exposure combined with (a) repeated 

maximal-intensity hypoxic exercise in hypoxia (LHTLH) or (b) normoxia (LHTL). (c) A 

control group followed a ‘live low-train low’ (LLTL) protocol. CS, citrate synthase; MCT-1, 

monocarboxylate transporter 1; MCT-4, monocarboxylate transporter 4; CA-3, carbonic 

anhydrase III; GLUT-4, glucose transporter 4; PFK, phosphofructokinase; AMPK, AMP-

activated protein kinase. 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

 

 

 


