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VIEWPOINT

Commentaries on Viewpoint: Human skeletal muscle wasting in hypoxia: a
matter of hypoxic dose?

INFLUENCE OF THE BETWEEN-SUBJECTS AND BETWEEN-
HYPOXIC CONDITIONS VARIABILITY IN OXIDATIVE STRESS

TO THE EDITOR: The authors of the Viewpoint (2) propose that a
cut-off point for initiation of hypoxia-induced muscle wasting is
~5,000 km·h. Although they employ a valuable new metric,
incorporating elevation and total exposure time, we previously
suggested that it might be better to quantify the hypoxic stimuli by
using “saturation hours” (4). This is particularly important given
that both (de)saturation and oxidative/nitrosative stress responses
to hypoxia are highly variable between individuals and also differ
between the types of hypoxia (i.e., hypobaric vs. normobaric) (3).
It is well established that the level of desaturation importantly
modulates oxidative stress and, moreover, that augmented oxida-
tive stress levels significantly contribute to disuse muscle atrophy
by increasing protein oxidation and accelerating muscle protein
breakdown (5). In addition, reactive oxygen species were shown to
stabilize HIF-1�, independently of hypoxic stimulus, which likely
plays a role in downregulation of muscle mass, as outlined in the
Viewpoint (2). The close relationship between oxidative/nitrosative
stress and muscle atrophy observed in cachexia and sarcopenia
patients (1) lends further support to this notion. The individual
variability in responses to hypoxia must therefore be taken into
account to enhance our understanding of the mechanism underlying
hypoxia-related muscle wasting. To conclude, it seems unlikely that
a critical hypoxic threshold for muscle wasting could be defined
solely on the “external” hypoxic dose, without accounting for the
between-individual variability in desaturation (i.e., hypoxic stimuli)
and/or oxidative/nitrosative stress responses.
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SKELETAL MUSCLE WASTING IN HYPOXIA; A MATTER OF
ALTITUDE

TO THE EDITOR: D’Hulst and Deldicque (1) argue that the
severity of muscle atrophy incurred at high altitude is depen-
dent on the combined effect of duration and degree of hypoxia
exposure, or “hypoxic dose” (1). We do see a limitation of this
concept, as it implies that someone residing in Leuven (alti-
tude: 28 m) for 10 years would be subjected to a hypoxic dose
of 2,454 km·h and incur 5% atrophy. Although the authors
wrote that “it is unknown which parameter, altitude, or time
spent at altitude is most decisive in the overall metric of
hypoxic dose,” our illustration suggests that altitude is the
prime determinant. This is further supported by the cut-off
point at 4,000 m in a plot of the degree of atrophy vs. altitude
(using the data in Table 1), whereas there was no clear
relationship with duration of altitude residence. This cut-off
point is likely related to the shape of the hemoglobin dissoci-
ation curve, where the oxygen tension at 4,000 m is such that
physiologically significant arterial hemoglobin desaturation
occurs (2). We acknowledge that one cannot entirely dismiss
the importance of duration of hypoxic exposure, simply be-
cause skeletal muscle atrophy can only be noticed some time
after net protein breakdown is initiated. However, muscle
atrophy will not continue indefinitely, but will reach a new
steady state (how otherwise can Tibetans still have muscle?).
Finally, other adaptations than atrophy, such as an increase in
hematocrit and capillarization, serve to attenuate muscle tissue
hypoxia and atrophy (3) during residence at altitude.
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COMMENTARY ON VIEWPOINT: HUMAN SKELETAL MUSCLE
WASTING IN HYPOXIA: A MATTER OF HYPOXIC DOSE?

TO THE EDITOR: D=Hulst and Deldicque (2) present an interesting
Viewpoint that the loss of muscle mass at high altitude is a
protective or adaptive mechanism of skeletal muscle to stress.
Based on the theory of General Adaptation Syndrome proposed
by Hans Selye (4), our body’s response to stress such as
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hypoxia is developed through three different stages: alarming
stage, resistance/adaptation stage, and de-adaptation stage. In
general, the skeletal muscle is anatomically and physiologi-
cally overcompensated during the adaptive stage. However,
human skeletal muscle wasting in hypoxia mentioned in this
paper is actually evident as a de-adaptive response. In other
words, high-altitude or prolonged hypoxic stress is overwhelm-
ing and the body reaches the de-adaptation stage.

However, the authors make a good point that the dose of
hypoxic stress does matter (2). We previously revealed that PO2

cycling has a protective effect on diaphragmatic skeletal mus-
cle via the attenuation of reactive oxygen species and the
increase of fatigue resistance (5). In human study, hypoxic
exposure during high-altitude training results in increased
V̇O2max in elite endurance athletes (3). Therefore, the dose and
duration of hypoxia exposure play a pivotal role in regulating
skeletal muscle mass. In contrast to chronic hypoxic exposure,
intermittent acute hypoxic exposure combined with resistance
exercise could potentially delay muscle wasting and promote
muscle growth (1). Future approaches should focus on how to
optimize the dose and duration of hypoxia exposure to maxi-
mize the skeletal muscle adaptive response without exacerbat-
ing skeletal muscle atrophy.
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A DOSE OF 5,000 KM·H OF SEVERE HYPOXIA (AT > 5,000 M
ALTITUDE) IS PROBABLY REQUIRED TO INDUCE SKELETAL
MUSCLE WASTING IN HUMANS

TO THE EDITOR: We appreciate the authors’ Viewpoint (1)
regarding the concept that a hypoxic dose of at least 5,000 km·h
is necessary to induce skeletal muscle wasting in humans. We
agree that both the time of exposure and the level of altitude are
critical for inducing a loss of muscle mass. However, in our point
of view, a dose of at least 5,000 km·h with a minimal altitude of
5,000 m is probably required. For instance, 8-wk exposure to
4,100 m altitude (i.e., ~5,500 km·h) did not lead to a significant
decrease in skeletal muscle fiber cross sectional area (FCSA) in
humans (2). In contrast, 40 days at an average altitude of ~5,500
m (i.e., ~5,300 km·h) reduced muscle FCSA by ~25% (3).
Athletes undergoing training camps usually stay at a lower alti-
tude of ~2,500–3,000 m, but not for a period long enough to reach

an hypoxic dose of 5,000 km·h. Still, a dose of at least 5,000 km·h
at 2,500–3,000 m altitude (i.e., at least 83 and 69 days of
exposure, respectively) is likely insufficient to induce significant
muscle atrophy because of the limited hypoxic stress. Several
physiological factors have been proposed to explain the loss of
body weight and muscle mass during prolonged exposure to
severe hypoxia, including a reduction of energy intake, nutrient
malabsorption, physical inactivity, and parameters related to
mountaineering (4). However, loss of appetite and the resulting
decreased caloric intake is probably the predominant cause for the
muscle wasting at � 5,000 m altitude (5).
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A LESSER MUSCLE HYPERTROPHIC RESPONSE TO
RESISTANCE TRAINING BELOW THE HYPOXIC DOSE OF
5,000 KM·H

TO THE EDITOR: D’Hulst and Deldicque (1) suggest a minimum
hypoxic exposure of 5,000 km·h for hypoxia-induced muscle
atrophy to develop. We (4) found a reduced hypertrophic
response to resistance training in chronic hypoxia. Young men
performed strength training of the elbow flexors for 1 mo, once
at 5,050 m and once with an identical load at sea level. They
were in energy balance, lived in comfortable conditions (Ev-K2-
CNR Pyramid, Lobuche, Nepal), and consumed a similar diet at
altitude and at sea level. NMRI quantified muscle cross-sectional
area increased less at altitude compared with sea level (11.3 vs.
17.7%), whereas muscle-specific tension did not vary. The hy-
poxic dose of 3,600 km·h suggests that the effect of hypoxia on
muscle protein anabolism and catabolism balance is already in-
fluenced below 5,000 km·h. As D’Hulst and Deldicque mention,
the combination of time and altitude is not necessarily uniform.
Furthermore, diet, living conditions, exercise, sleep, fatigue, or
nonaltitude illness may be confounding factors (5). Muscle main-
tenance in hypoxia thus still remains to be better described. The
verb “wasting” has a strong negative connotation, and the title of
this Viewpoint suggests that muscle loss in hypoxia implies
squandering of precious tissue (1). As acknowledged by D’Hulst
and Deldicque, there are good reasons to not discard the opposite
hypothesis. The reduction in the volume of metabolic costly tissue
may actually serve a physiological purpose. In their reviews,
Murray and Montgomery (3; see also comment in 2) proposed
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that the loss of body mass at altitude helps the organism to survive
in oxygen deprived conditions.
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COMMENTARY ON VIEWPOINT: HUMAN SKELETAL MUSCLE
WASTING IN HYPOXIA: A MATTER OF HYPOXIC DOSE?

TO THE EDITOR: D’Hulst and Deldicque’s Viewpoint (1) pro-
posed that skeletal muscle atrophy during hypoxia in humans
would occur if a “hypoxic dose” is reached. Although this has
merit to shed light on hypoxia-mediated skeletal muscle ef-
fects, we believe that the idea of a “critical hypoxic dose”
needs to be further defined. First, the Viewpoint suggests a
linear relationship between altitude level and subsequent ef-
fects on muscle tissue. However, the level of arterial O2

saturation (SaO2
) in relation to altitude is curvilinear. Further-

more, the effects of normobaric vs. hypobaric hypoxia on SaO2
do not seem to be equal (4). Thus the use of SaO2

rather than
altitude level could be more specific in defining a muscle
wasting zone. In addition, hypoxia-induced erythropoiesis ap-
pears to depend on the baseline iron stores and hemoglobin
mass (3). Therefore, preliminary skeletal muscle and adipose
tissue mass could be considered as covariates for hypoxia-
induced muscle wasting. We question the relative importance
of the altitude level and exposure duration factors and believe
altitude severity is a key signal for triggering muscle atrophy.
In animal studies, the correlation between skeletal mass loss
and altitude level is strong (P � 0.001, r2 � 0.68) with a
significant atrophy occurring above 5,000 m (2). Consistently,
human studies cited in the Viewpoint report this muscle wast-
ing phenomenon above 5,000 m, which suggests that this
altitude could represent a critical threshold. These concerns
aim to provide future directions to unravel hypoxia-mediated
skeletal muscle regulation.
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COMMENTARY ON VIEWPOINT: HUMAN SKELETAL MUSCLE
WASTING IN HYPOXIA: A MATTER OF HYPOXIC DOSE?

TO THE EDITOR: We welcome the suggestion by D’Hulst and
Deldicque (1) that both duration of exposure and elevation
influence the occurrence and extent of muscle wasting in
hypoxia. The application of the hypoxic dose metric, proposed
by Garvican-Lewis et al. (2), is an interesting proposition but,
in our view, too preliminary given the paucity of studies, low
subject numbers, and interindividual variability in response.
The studies highlighted collectively suggest that muscle wast-
ing occurs only above a threshold average elevation of around
5,000 m and reliably so above this point. Any dependence upon
duration of exposure is harder to establish. Sojourns above
5,000 m are rarely short in duration, and within those studies
hitherto performed above this altitude (durations 35–75 days),
there is no clear association between dose and extent of
wasting. Exposure duration is key to many aspects of muscle
remodeling at altitude (3). Indeed, the stabilization of HIF1� vs
HIF2�, and thus their relative contributions to the cellular
hypoxia response, is time dependent (4). However, muscle
wasting is likely also influenced systemically by appetite-
suppressing effects of hypoxia (5), which may also be time
dependent and would probably introduce further interindi-
vidual variation. The duration component must also reflect any
delay between a molecular response to hypoxia/caloric deficit
and the detection of measureable morphological changes, un-
less molecular techniques are employed. The authors make the
important point that future studies should be designed to
precisely elucidate the relative contributions of duration vs
elevation to muscle wasting. We agree, and reserve judgement
on a hypoxic dose threshold.
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