
HAL Id: hal-01744383
https://insep.hal.science/hal-01744383

Submitted on 27 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Changes in phase space during learning an unstable
balance

Fabrice Mégrot, Benoit G. Bardy

To cite this version:
Fabrice Mégrot, Benoit G. Bardy. Changes in phase space during learning an unstable balance.
Neuroscience Letters, 2006, 402 (1-2), pp.17 - 21. �10.1016/j.neulet.2006.03.041�. �hal-01744383�

https://insep.hal.science/hal-01744383
https://hal.archives-ouvertes.fr


Neuroscience Letters xxx (2006) xxx–xxx

Changes in phase space during learning an unstable balance

Fabrice Mégrot a,∗, Benoı̂t G. Bardy b,c

a Movement, Action and Performance Laboratory, National Institute of Sports and Physical Education, 11 Tremblay Avenue, 75012 Paris, France
b Institut Universitaire de France, France

c University of Montpellier-1, France

Received 8 December 2005; received in revised form 4 March 2006; accepted 17 March 2006

Abstract

Six participants learned to maintain an unstable balance on a stabilometer, during 6 consecutive days of practice (total of 90 trials). Lateral
and angular variations of body segments and body center of mass were analysed, and their evolution over the learning period was compared
to the changes in dimensional variables capturing the structure of the movement itself (embedding and correlation dimension, largest Lyapunov
exponent). Results indicated that (i) learning occurred, (ii) was accompanied by persistence in the dimension of the movement, and (iii) by a
reduction in chaotic (or stochastic) components. Compared to other results in the learning literature, these results suggest that dimensional changes
over learning are task-specific.
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hese last two decades or so, theories of motor learning have pro-
ressively incorporated tools from synergetics [11] and dynam-
cal system theories [2] to account in the same framework
or persistence and changes occurring during the acquisition
f new sensori-motor skills. Instead of focusing on the pro-
esses operating within the central nervous system—or their
nformation-processing psychological equivalents—the dynam-
cal approach to motor learning emphases the self-organizing
rinciples underlying movement stabilisation and destabiliza-
ion over time, under the shaping influence of environmental,
ask, and body-related constraints. Since Bernstein’s [5] origi-
al formulation of the changes in the biomechanical components
ccompanying the mastering of new skills—freezing, releas-
ng, exploiting the number of degrees of freedom involved in
he movement (e.g., [31])—several researchers have proposed
ew methods to solve the degrees of freedom problem, related
o the selection, among a high number of potential configura-
ions in kinematic (e.g., joint) space, of the appropriate variables
nvolved in the control space [23]. Maintaining an upright stance
s a classical example in which many degrees of freedom at
he neuro-muscular or joint level are compressed into a low-

Interesting for the present study are the attempts over the
last decade to quantify the active (not biomechanical) degrees
of freedom of the sensori-motor system, and their change over
the course of learning, to capture this dimensionality. It is also
generally assumed that the number of degrees of freedom of
the control structure (active degrees of freedom) is considerably
lower than the number of degrees of freedom of the controlled
system [15].

Dimensional analyses have been applied to various skills
such as finger oscillation movements [15], tremor [21], tracking
movements [9] and upright bipedal posture [18,24]; see [23] for
a recent review). In this literature, the estimated dimension pro-
vides a wide range of values, from low dimension (just above
1) to very high dimension (8–10). Interpretations of this wide
range of values are not easy. During development or learning,
dimension can decrease [12,16,33] or increase [22] according
to the type of task. The direction of the change (increase or
decrease) seems to be constrained by task properties. In many
cases, it is not the active degrees of freedom per se that are
modulated, but rather the geometrical structure of the under-
lying attractor, often in the direction of more structured and
imensional space with only a few degrees of freedom, synergies
e.g., [19]), or coordination patterns [3,4].

∗ Corresponding author. Tel.: +33 141 744 470.
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predictable patterns.
Dimensional analyses can be coupled with an analysis of the

predictability of the system, revealing its organisation. Research
on postural control has very rarely used this type of analysis
(see [7], for an exception). The measure of the largest Lyapunov

.
304-3940/$ – see front matter © 2006 Elsevier Ireland Ltd. All rights reserved
oi:10.1016/j.neulet.2006.03.041
NSL-23051; No. of Pages 5

mailto:fabrice.megrot@insep.fr
dx.doi.org/10.1016/j.neulet.2006.03.041


2 F. Mégrot, B.G. Bardy / Neuroscience Letters xxx (2006) xxx–xxx

exponent consists in the evaluation of the sensitivity to the initial
conditions of a time series (e.g., [26]). It is a reliable indicator
of the organization of the attractor in its phase space, and thus
an interesting addition to the dimensional analysis. A complex
system can for instance be highly organized and a simple system
can on the contrary be chaotic. Learning a new movement can
consist in a change in the dimension of the intrinsic dynamics of
the movement (from complex to simple or from simple to com-
plex) or/and a change in the structure of the movement itself.
Therefore, dimensional and predictability analyses appear com-
plementary. The first one is more quantitative (number of active
degrees of freedom) while the second one is more qualitative
(modification of the structure of the attractor in phase). The aim
of the present study is to evidence the quantitative (dimension)
and qualitative (largest Lyapunov exponent) changes in the body
organization during learning to maintain an unstable balance.

Participants (N = 6) were asked to maintain their balance
on a stabilometer (Lafayette Instrument, model 16020). The
60 cm × 40 cm platform had its axis of rotation 20 cm above
the feet level, and its maximal angular rotation was ±16◦ with
regard to the horizontal axis. Participants stood on the platform
in a comfortable Romberg position (side by side), with the shoul-
ders perpendicular to its axis of rotation, and the arms in the back
(see [18]). They were instructed to minimize the movement of
the platform during a trial and do their best to avoid contact
of its edges with the ground surface. Each participant received
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of mass were computed using Chandler et al.’s biomechanical
model [6].

In each trial, phase space reconstruction was applied at each
of these centers of mass and three variables were computed for
local (head, trunk and leg) and global components: the embed-
ding dimension (ED); the largest Lyapunov exponent (λ) and the
correlation dimension (CD).

Time series were analysed following Kantz and Schreiber’s
“Nonlinear Time Series Analysis” [14]. The procedure involved
(i) the attractor reconstruction from the time series and the char-
acterization of the chaotic dynamics by means of (ii) maximum
Lyapunov exponent and (iii) correlation dimension. For (i), the
matrix is characterized by two key parameters: The embedding
dimension (ED) and the delay time τ. The embedding dimension
is the minimum dimension for which the reconstructed attractor
can be considered completely unfolded with no overlap in the
reconstructed trajectories. If the chosen dimension is lower than
ED, the attractor is not completely unfolded and the underlying
dynamics cannot be investigated.

The algorithm used for the computation of ED was the
‘Global False Nearest Neighbors’ algorithm [1]. The delay time
τ represents a measure that quantifies the reconstruction expan-
sion from the identity line of the embedding space. In our
study, τ was chosen using the first minimum point in the time
delayed mutual information [8,14,32]. This technique measures
the amount of information shared between two measurements a
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5 experimental trials every day during six consecutive days of
ractice (total of 90 trials). Trial duration was 40 s (see Fig. 1).

The motion of body segments was recorded in three dimen-
ions with a six-camera VICON 512 infra-red motion analysis
ystem, at a sampling rate of 120 Hz. Fifteen passive reflecting
arkers were positioned on various parts of the body (left and

ight shoulders, sternum, left and right hips, left and right thighs,
eft and right knees, left and right tibias, left and right ankles, and
eft and right toes), and were later used to calculate the position
nd motion of the global center of mass (Cmg), as well as of
ocal centers of mass for the head (Cmh), the trunk (Cmt), and
he left leg (Cml). Position data were filtered using a 2nd order
utterworth filter with a cut off frequency of 4 Hz. All centers

Fig. 1. Experimental apparatus.
nd b. When the amount of information learned from a about b
s at a minimum, the two time points are taken to be sufficiently
ndependent [32].

For (ii), a trajectory is chaotic if there is at least one pos-
tive exponent. The value of this exponent, called the largest
yapunov exponent (λ) gives a measure of the divergence rate
f infinitesimally close trajectories and of the unpredictabil-
ty of the system. It thus gives a good characterization of the
ystem’s underlying dynamics. The Rosenstein-Kantz’s method
13,27,28] was used to compute λ from the time series. This
ethod measures in the reconstructed attractor the average

ivergence of two close trajectories in the amount of time con-
idered.For (iii), the Grassberger–Procaccia algorithm [10] was
sed to determine the correlation dimension. The correlation
imension is an estimate of the least number of independent
ariables needed to characterize the system (given sufficient
ne scale resolution). With each pass through the data, a new
ata point is taken, and a hyperdimension sphere of embedding
imension ED and radius r is centred on that point. The fraction
f subsequent data points in the record within that sphere [C(R)]
s then calculated for various values of r (length scale), and a
lot of log C(R) versus log r is performed for a range of embed-
ing dimensions (for an embedding dimension of 2 in this case).
he slope of this relation is the correlation dimension. These
lopes were plotted against r to identify values of the correlation
imension that were independent of both r and ED. A correlation
oefficient of 0.95 between the log [C(R)] − log(R) plot and the
inear regression was used as a criterion to exclude unreliable
stimates of CD.

In order to test for spurious effects, the method of surrogate
ata was used [29]. Data were transformed in the frequency



F. Mégrot, B.G. Bardy / Neuroscience Letters xxx (2006) xxx–xxx 3

domain using a Fast Fourier Transform (FFT). Then, the com-
plex components were multiplied by random phases uniformly
distributed between 0 and 2π. The data were then transformed
back in the temporal domain by computing an inverse FFT. The
new time series now contains random numbers with the pre-
scribed spectrum. This classical method, in addition to test for
the artificial presence of chaos, allows to verify that the statisti-
cal effects obtained do exist and are not the consequence of the
way ED, λ, and CD are computed [14].

In addition to these phase space variables, kinematic variables
were computed in order to assess the changes in biomechanical
degrees of freedom during the 6 days of practice, i.e., (iv) the
standard deviation of lateral displacement at each level, used
to assess the relative stabilization of the segments and of the
center of mass in that direction (lateral variability or LV); mean
standard deviations of angular displacements of the platform,
the hip, or the head with respect to the horizontal axis, or angu-
lar variation AVp, AVhip, AVhead. AVp were used as indexes of
the participants’ performance over the 6 days of practice, and
AVhead and AVhip provided information about angular segmental
stabilization in the external space.

ED, LV and λ data were submitted to a Day (1 to 6) × Levels
(head, Cm, trunk, leg) MANOVA, followed by two-ways
repeated measure ANOVAs on each of these variables. Due
to the criterion used to exclude unreliable estimates values
(r ≥ 0.95), the number of CD values differed between condi-
t
t

Due to the conservative criterion used to exclude unreli-
able fits, 54% of the CD data were kept for analysis. The
general MANOVA indicated a significant effect of Day, R(15,
5891) = 15.36 p < .05, and Level, R(9, 5193) = 276.29 p < .05.
The interaction between these two factors was also significant,
R(15, 6340) = 2.03 p < .05. We now proceed with univariate anal-
yses for each of the dependent variables.

ED was 2 in each trial of each condition. The Day × Level
ANOVA yielded no effect of Day, F(5, 2136) = 1.00, n.s., or
level, F(3, 2136) = 1.00, n.s. This suggests that the geometry of
the underlying dynamics was similar between levels and over
practice, and did not exceed a limit cycle dynamics.

λ had a mean of 0.12 (S.D. = 0.06) across levels, condi-
tions and trials, suggesting a modest divergence in the behavior
of the postural system. Important differences, however, were
found between levels and conditions. The Day × Level ANOVA
indicated a main effect for Day, F(5, 2136) = 36.42, p < .05,
the lateral movements of the body being more and more pre-
dictable as learning progressed. We can extract from Fig. 2c that
Day-2, Day-3 and Day-4 were not different from each other
(Newman–Keuls p < .05), indicating a non-linear decrease in
divergence over the learning process.

There was also a main effect for the Level factor, F(3,
2136) = 515.97, p < .05. With one exception (Cmg versus Cmt),
all levels significantly differed from each other (Newman–Keuls
p < .05). A proximo-distal gradient was found to exist, with
l
h

F
a

ions (see below). All AV measures were analysed in separate
wo-ways ANOVAs.
ig. 2. (a) Lateral variability of head, trunk, leg, and global CM during the 6 days of p
xis during the 6 days of practice. (c) Largest Lyapunov exponent values of global (C
ower values for the proximal components (Cmg, Cmt) and
igher values for the distal components (Cmh, Cml), as
ractice. (b) Angular variability between head, hip, platform, and the horizontal
M) and local (head, trunk, leg) centers of mass during the 6 days of practice.
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observed in Fig. 2c (Newman–Keuls p < .05). The interac-
tion between the two factors was also significant, F(15,
2136) = 2.68, p < .05, and indicated a differential change in λ

over time, with the movement of the head being more pre-
dictable as learning progressed than movement of the other
segments.

To test for spurious effects, the same analysis was performed
on the surrogate values of λ. Values of surrogate λ increased
toward unpredictability, with a mean of 2.32 (S.D. = 0.45). The
surrogate values were about 20 times higher than the original
values, t(2159) = 30.61, p < .05). In addition, The Day × Level
ANOVA did not show any significant effect for Day, F(5,
2136) = 0.071, Level, F(3, 2136) = 0.12, or Day × Level inter-
action, F(15, 2136) = 1.13, p > .05, suggesting a rather erratic
change in surrogate λ between conditions. These results
argue for the adequateness of the dimensional analysis to
assess the (differential) presence of chaos (or even stochas-
tic components) in the data and their decrease as learning
progresses.

CD had a mean value of 0.73 (S.D. = 0.41) across levels, days,
and trials. There was no effect for day, F(5, 1173) = 0.82, n.s.,
and no effect for level, F(3, 1173) = 1.80, n.s. The Day × Level
interaction was not significant, F(5, 1173) < 1. These results sug-
gest that the underlying attractor was of low-dimensionality in
each case.

CD was also computed on the surrogate data and compared
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movements, with a singular decrease on Day-3 for all segments
(see Fig. 2a).

Mean angular deviation with respect to the horizontal axis
was 5.34◦ (S.D. = 2.29) for the platform, 3.20◦ (S.D. = 1.05) for
the head, and 4.88◦ (S.D. = 2.48) for the hips. The head was
the segment exhibiting the less amount of lateral rotation (see
Fig. 2b). The Day × Level ANOVA performed on AV showed
a significant effect of Level, F(2, 1602) = 189.80, p < .05, with
all levels being significantly different from each other (post
hoc Newman–Keuls p < .05). A main effect for Day was also
found, F(5, 1602) = 33.15, p < .05, revealing less lateral rotation
of the body at the end of the learning session than at the begin-
ning. However, the significant Day × Level interaction, F(10,
1602) = 10.02, p < .05, completed the picture by showing that
the changes in AV was not linear. Two important aspects of this
interaction have to be noticed (Fig. 2b). First, lateral rotation
decreased more for the head and the platform than for the hips.
The decrease in platform rotation confirmed that participants did
follow the instructions given by the experimenter (which was to
minimize the movement of the platform) and learned the task
over the 6 days of practice. Second, changes in AV were mostly
noticeable during Day-1 and Day-6. As a matter of fact, Day-2,
Day-3, Day-4, and Day-5 did not differ between each other, but
were different from the other 2 days, Newman–Keuls p < .05.

Learning occurred. The results obtained in this study showed
that participants improved their performance over the 6 days
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ith the original values. Similar to what was found for λ, a sig-
ificant increase in dimension existed for the surrogate data, with
eans of 1.32 (S.D. = 0.27). Original and surrogate values of CD

iffered, t(1105) = 21.87, p < .05. The Day × Level ANOVA did
ot reach significance for Day, F(5, 1082) = 2.81, p > .05, for
evel, F(3, 1024) < 1, or for the Day × Level interaction F(15,
082) < 1.

Taken together, these results indicate that the observed values
f λ and CD were attributable to the underlying dynamics of the
ostural system, and not to a potential artefact introduced by the
imensional analyses.

Mean lateral standard deviation was 3.5 cm (S.D. = 0.68) for
mg, and was 5.05 cm (S.D. = 1.28), 2.12 cm (S.D. = 0.54), and
.56 cm (S.D. = 0.32), for Cmh, Cmt, and Cml, respectively.
ence, the most immobilized segment in the environment was

he leg, closely followed by the trunk, the global center of mass,
nd the head, exhibiting lateral movements of relative high
mplitude. The Day × Level ANOVA performed on LV con-
rmed this result. A significant effect of Level was found for LV,
(3, 2136) = 330.30, p < .05, with all levels being significantly
ifferent from each other, post hoc Newman–Keuls p < .05. The
ay × Level ANOVA indicated a main effect of practice, F(5,
136) = 14.18, p < .05, showing a decrease in LV as learning pro-
ressed. Fig. 2a details these effects. The Day × Level interac-
ion was also significant, F(15, 2136) = 2.23, p < .05, suggesting
differential decrease in lateral movement of the body over the
days of practice. As evidenced by post hoc Newman–Keuls

ests (p < .05), lateral movements of the head decreased more
ver time than movements of the other segments, with Day-3
nd Day-6 being different from the other 4 days. These results
videnced a non-linear change over the learning session of body
f practice (from 7.5◦ the first day to 4.5◦ the last day for mean
ngular variation of the platform). However, this improvement in
erformances was not accompanied by a variation in dimension.
n other words, learning to maintain an unstable balance cannot
e understood as a simplification of the performed movements.
he similarity in the values of CD at global and local levels

between 0 and 1) suggests that the behavior of the postural sys-
em aims towards immobility. This low-dimensional dynamics
ertainly expresses the regulatory processes underlying balance
ontrol as well as the constraints acting upon the postural sys-
em. These results are not irrational if we consider that the
nstable platform cannot be perfectly immobilized (dimension
f 1), or sustain perfectly rhythmic movements (dimension of
). The observed absence of dimensional variation over time
uns counter other observations in the field of motor learn-
ng [23] and suggests that different levels of constraints (low,
igh) impose different organization of the movement during
earning.

Although a similarity in dimension was observed between
istal (Cmh, Cml) and proximal (Cmg, Cmt) components of the
ostural system, the behavior of the proximal components (Cm
nd trunk) was found to become more predictable than the behav-
or of distal constituents (legs and head) as learning progressed.
or instance, a minimization of λ for Cmg was observed between
ay-1 (mean of 0.077) and Day-6 (mean of 0.035). Although for-
ally (i.e., mathematically), predictability implies a null value

f λ, in biological movements with motion-capture related noise
nd biomechanical modelling, the significant decrease in λ over
ime suggests a route towards predictability. This, in turns, indi-
ates that participants modified the structure of their attractor to
mprove their performance.
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The literature in postural control is prolix with respect to
the stabilizing role of the head in the regulation of stance (e.g.,
[17,20,25]). The theory of head stabilization indeed suggests
that the position of a stabilized segment (in the external environ-
ment) can provide a—perceptual or physical—reference frame
for the organization of the movement. This was not the case
in our study. The head exhibited a highly divergent behavior
(mean λ of 0.165 over the 6 days), and its lateral variations
were important (mean of 0.05 meters over the 6 days), cre-
ating both mechanical and perceptual (e.g., optical) changes.
However, the continuous reduction over time of the angular dis-
placement of the head, associated with the decrease of λ over
the last 2 days suggests an increasing role of perceptual compo-
nents during learning. The angular rotation of the head during
standing creates a rotary optical flow (e.g., [30]) which in turns
can be used to regulate balance. Because the distance between
the head and the surroundings remained more or less invariant
in this task, the progressive minimization of head angular rota-
tion over time reduces the rotary optical component, which in
turns, may contribute to stabilize posture. We did not manipu-
late the available visual information in this study (but see [18]),
and thus cannot conclude about its role in stabilizing posture
during learning. The forcing role of optical flow in modulating
the dynamic variables analysed in this contribution (dimension
and predictability) needs to be assessed and is the focus of our
current research.
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