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ABSTRACT 75 

Purpose: The aims of the present study were to determine during childhood and adolescence 76 

(i) the effect of sex on non-oxidative energy production, quantified by the accumulated 77 

oxygen deficit (AOD), and (ii) the influence of AOD on high-intensity performance.  78 

Methods: Thirty-nine boys and 35 girls aged 10-17 years performed a 60-s all-out test on a 79 

rowing ergometer to determine AOD and mean power output (MPO). Multiplicative 80 

allometric modelling was used to assess the concurrent effects of lean body mass (LBM) and 81 

age on AOD.  82 

Results: AOD significantly increased with age in both sexes (p < 0.001) with boys exhibiting 83 

significantly higher AOD than girls from the age of 14 years (10-11.9 yr: 1.9 vs 1.9 L, 12-84 

13.9 yr: 2.4 vs 2.7 L, 14-15.9 yr: 2.8 vs 4.6 L and 16-17.9 yr: 2.9 vs 5.2 L, in girls and boys 85 

respectively, p < 0.001). However, a sex difference was no longer significant when AOD was 86 

analysed using an allometric model including age and LBM (p = 0.885). Finally, significant 87 

correlations were found between AOD and MPO in boys and girls but with lower evidence in 88 

girls (r2 = 0.41 vs. 0.89).  89 

Conclusion: Non-oxidative energy production increased more extensively in boys than girls 90 

from the age of 14 years. Age and LBM accounted for the sexual differentiation of AOD 91 

during childhood and adolescence. In addition, AOD was found to be a determinant factor of 92 

high-intensity performance, more particularly in boys. 93 

 94 

KEY WORDS:  non-oxidative metabolism; lean body mass; girls; multiplicative allometric 95 

modelling; age. 96 

  97 
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ABBREVIATIONS 98 

ANCOVA  Analysis of covariance 99 

ANOVA  Analysis of variance 100 

AOD   Accumulated oxygen deficit 101 

BM   Body mass 102 

[HCO3
-]min  Minimal blood bicarbonate concentration 103 

[La]max   Maximal blood lactate concentration 104 

LBM    Lean body mass 105 

MPO   Mean power output 106 

pHmin   Minimal blood pH 107 

V̇O2max   Maximal oxygen uptake 108 

V̇O2rest   Oxygen uptake at rest  109 
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INTRODUCTION 110 

 It is well-established that the development of body composition during childhood and 111 

adolescence is sex-specific (Baxter-Jones et al. 2003; Wells 2007). Indeed, post-pubertal 112 

boys acquire a greater lean body mass (LBM) and less fat mass than post-pubertal girls 113 

during late adolescence (Baxter-Jones et al. 2003; Wells 2007). As fat is metabolically inert 114 

(Goran et al. 2000), this sexual dimorphism during puberty strongly influences performance 115 

during high-intensity exercise. For instance, peak power output (in W) increases significantly 116 

in both sexes from childhood into adolescence (Doré et al. 2001; Martin et al. 2003; 117 

Armstrong and Welsman 2019a) but from 13-14 years of age boys develop higher peak 118 

power output than girls (Blimkie et al. 1988; Armstrong et al. 1997; Martin et al. 2004; Doré 119 

et al. 2005; Mikulic and Markovic 2011; Armstrong and Welsman 2019a). Several authors 120 

have suggested that these differences in performance between girls and boys from the age of 121 

13-14 years are influenced by non-oxidative energy output in addition to differences in body 122 

composition (Malina et al. 2004; Doré et al. 2005). However, while it is well-established that 123 

the contribution of non-oxidative metabolism during high-intensity exercise is greater in post- 124 

than pre-pubertal boys (Birat et al. 2018; Ratel et al. 2002b, a), no previous study has 125 

evaluated non-oxidative energy production during childhood and adolescence with respect to 126 

sex, or established any direct relationship between non-oxidative metabolism and 127 

performance during high-intensity exercise from childhood into adolescence.  128 

 The activity of non-oxidative metabolism can be assessed using several different 129 

methods such as muscle biopsy (Eriksson et al. 1971) or phosphorus31 magnetic resonance 130 

spectroscopy (Tonson et al. 2010). However, for ethical or technological reasons, these 131 

techniques have not been used to evaluate the importance of non-oxidative metabolism in the 132 

relative development of the performance of girls and boys. Alternatively, blood lactate assays 133 

have been used to explore non-oxidative (glycolytic) metabolism during childhood and 134 
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adolescence, with only one study reporting a lower blood lactate response following maximal 135 

exercise in girls compared to boys, from the age of 16 years (Cumming et al. 1985). 136 

However, blood lactate concentration must be interpreted cautiously as lactate sampled in 137 

blood cannot be assumed to reflect a consistent or direct relationship with muscle lactate 138 

production. The physiological relevance of this blood marker to assess non-oxidative energy 139 

turnover during high-intensity whole-body exercise is, therefore, highly debatable (Ferguson 140 

et al. 2018). 141 

Among other methods, the measurement of accumulated O2 deficit (AOD) has been 142 

found to be a valid technique in adults (Medbø et al. 1988) and children (Naughton and 143 

Carlson 1995) to assess non-oxidative energy production during high-intensity, whole-body 144 

exercise. However, use of this method with children and adolescents has seldom been 145 

reported. To our knowledge, three studies have reported lower AOD, whether expressed in 146 

absolute terms or in ratio with body mass (BM) in 9-12-year-old boys than male adolescents 147 

or young men (Hebestreit et al. 1998; Leclair et al. 2011; Diry et al. 2020), thereby 148 

suggesting an age effect on non-oxidative energy metabolism. Furthermore, while a sex-149 

related difference in AOD of ∼15-25% (relative to body dimensions) has been observed in 150 

adults (Medbø and Burgers 1990; Weyand et al. 1993; Ramsbottom et al. 1997; Weber and 151 

Schneider 2000), no previous study has analysed changes in AOD during childhood and 152 

adolescence with respect to sex. No differences in AOD or AOD relative to BM have been 153 

reported during high-intensity exercise between 9-11-year-old non-athletic girls and boys 154 

(Carlson and Naughton 1993; Naughton and Carlson 1995; Berthoin et al. 2003). In addition, 155 

the only study to have analysed the sex-related difference in AOD in 14-15-year-olds showed 156 

that trained girls (n = 8) had significantly lower absolute AOD and AOD relative to BM than 157 

trained boys (n = 8) when exercising on an inclined treadmill at two constant exercise 158 

intensities (120 and 130% of maximal aerobic power) (Naughton et al. 1997). These 159 
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differences were also found in performance, as running speed was significantly higher in 160 

boys than girls at both exercise intensities (Naughton et al. 1997). 161 

Although in previous studies AOD and performance during high-intensity exercise 162 

have been occasionally investigated with small samples of girls and boys, a relationship 163 

between metabolic and mechanical parameters has not been directly established (Carlson and 164 

Naughton 1993; Naughton and Carlson 1995; Naughton et al. 1997). Leclair et al (2011) 165 

reported a positive relationship between AOD relative to BM and time to exhaustion during a 166 

cycle exercise at 100% of maximal aerobic power in 9-11-year-old boys; however, a similar 167 

relationship was not observed in men.  168 

However, interpretation of AOD is likely to have been clouded in previous studies 169 

(Carlson and Naughton 1993; Naughton and Carlson 1995; Naughton et al. 1997; Hebestreit 170 

et al. 1998; Berthoin et al. 2003; Leclair et al. 2011) by controlling for differences in body 171 

size by simply dividing AOD by BM (i.e., ratio scaling). It is well-established that ratio 172 

scaling with BM does not create size-free physiological variables during childhood and 173 

adolescence (Welsman and Armstrong 2019). Numerous studies have demonstrated the 174 

fallacy of ratio scaling physiological variables and it has been compellingly argued that with 175 

cross-sectional data, allometric scaling based in log-linear regression with multiple covariates 176 

is the method of choice when investigating the development of physiological variables during 177 

growth (Nevill and Holder 1995; Welsman and Armstrong 2000, 2019). Furthermore, as fat 178 

mass is metabolically inert (Goran et al. 2000), LBM is a more appropriate covariate of 179 

physiological variables during exercise than total BM. LBM varies with age (Baxter-Jones et 180 

al. 2003), therefore, allometric analyses including both age and LBM as covariates are likely 181 

to provide more insights into AOD than ratio scaling with BM. Moreover, it has been 182 

recently demonstrated with multiplicative allometric modelling of large, longitudinal data 183 

sets of 11-18-year-olds that, in both sexes the most powerful influence on peak aerobic 184 
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power, peak power output, and mean power output is concurrent changes in age and LBM, as 185 

reflected by the combination of BM and skinfold thicknesses (Armstrong and Welsman 186 

2019a, b).  187 

 Therefore, the aims of the present study were to determine during childhood and 188 

adolescence (i) the effect of sex on changes in non-oxidative metabolism (i.e., AOD) incurred 189 

by high-intensity whole-body exercise, and (ii) the importance of AOD on performance with 190 

respect to age and sex. We hypothesised that (i) AOD increases more extensively in boys 191 

than in girls from the age of 14 years because of the greater gains in boys’ LBM, (ii) sex-192 

related differences in AOD are not significant when changes in both age and LBM are taken 193 

into account using a multiplicative allometric model, and (iii) non-oxidative energy 194 

production (i.e., AOD) is positively associated with performance (i.e., power output) with the 195 

relationship weaker in girls due to the smaller increase in their LBM. 196 

 197 

MATERIALS AND METHODS 198 

Subjects  199 

 Thirty-nine male and thirty-five female rowers aged from 10 to 17 years volunteered 200 

to participate in the present study. All participants trained physically two to three times per 201 

week with similar training volumes between girls and boys. None of the participants had a 202 

family history of cardiovascular disease or was under medication. The present study was 203 

approved by an institutional ethics review board (Comité d'Éthique pour la Recherche en 204 

Sciences et Techniques des Activités Physiques et Sportives – CERSTAPS, n°2019-18-09-205 

36) and conformed to the standards of use of human participants in research as outlined in the 206 

Sixth Declaration of Helsinki. The participants were informed of the experimental procedures 207 

and gave their written assent before any testing was conducted. In addition, written informed 208 

consent was obtained from the parents or legal guardians of the participants. 209 



 11 

Experimental design 210 

 Volunteers were tested in two experimental sessions separated by at least 48 hours. 211 

Participants were instructed not to undertake any strenuous activity during the 24 hours 212 

preceding each session. The first session was dedicated to gathering participants’ physical 213 

characteristics (anthropometric measurements and body composition) and maximal oxygen 214 

uptake (V̇O2max) assessment. During the second session, the volunteers performed a 60-s all-215 

out test. The two exercise sessions were carried out on a rowing ergometer (Model D, 216 

Concept2, Morrisville, VT, USA). The young participants were fully familiarised with the 217 

equipment. The computer of the ergometer continuously delivered the power output (in W). 218 

The resistance factor was set by the investigators between 100 and 130 according to age, sex, 219 

and the expertise level of young rowers. The same resistance factor was kept for both tests. 220 

Verbal encouragement was systematically provided by the investigators during each exercise 221 

session. 222 

 223 

Experimental measurements 224 

Session 1 225 

Anthropometric characteristics and body composition 226 

 BM (in kg) was measured using a digital weight scale with a precision of ± 0.01 kg 227 

(Seca 899, Seca, Germany). Standing height (in m) was assessed using a stadiometer with a 228 

precision of ± 1 mm (Seca 213, Seca, Germany). Skinfold thicknesses were measured at the 229 

triceps and subscapular sites using a Harpenden calliper (British Indicators Ltd, St Albans, 230 

UK) and the mean value from three reproducible measurements was calculated. The 231 

measurements were taken by the same experienced investigator on the right side of the body 232 

to reduce variability in the results for girls and boys. Body fat percentage and LBM (in kg) 233 

were determined using the equations developed by Slaughter et al. (1988). These equations 234 
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are specific to sex, ethnicity, and age, and are recommended for assessing body fat and LBM 235 

in children 8-18 years of age. 236 

 237 

Maximal oxygen uptake test 238 

 Each participant performed a progressive test to exhaustion to determine maximal O2 239 

uptake (V̇O2max in L∙min-1). The initial power was set between 40 and 80 W during the first 240 

five minutes and the power was incremented by 10-30 W every three minutes according to 241 

age, sex, and the expertise level of participants. Arterialised capillary blood samples (20 µL) 242 

were taken from the earlobe at rest and every step to measure the time course of blood lactate 243 

concentration ([La] in mmol∙L-1). Whole blood [La] was determined enzymatically using a 244 

Biosen C-Line Clinic lactate analyser (EFK Diagnostics GmbH, Barleben, Germany). 245 

 Oxygen uptake, carbon dioxide output and ventilation were continuously monitored 246 

using a breath-by-breath analyser (Quark CPET, Cosmed, Italy). Heart rate was continuously 247 

recorded with a heart rate monitor (HRM-Dual, Garmin, Kansas, USA). V̇O2max was 248 

considered to be reached during the last step when at least two of the following criteria were 249 

met: (i) V̇O2 levelling-off, (ii) maximal respiratory exchange ratio ≥1.1, (iii) maximal heart 250 

rate ≥ 95% of the age-predicted maximal heart rate (208.609 – 0.716 ∙ age) (Shargal et al. 251 

2015) and (iv) blood lactate concentration higher than 8 mmol∙L-1. 252 

 253 

Session 2 254 

60-s all-out test 255 

 After a standardised 15-min warm-up at about 130-140 beats∙min-1 and two short 256 

sprints (10-s) in the last five minutes, all participants performed a 60-s all-out test. This test 257 

was followed by a 10-min sitting recovery. Cardio-respiratory parameters were continuously 258 

measured using a breath-by-breath analyzer (Quark CPET, Cosmed, Italy). Capillary 259 
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arterialised blood samples (80 µL) were drawn from the earlobe and collected after warm-up 260 

and at 1-, 3-, 5-, and 8-min post-exercise to measure the time course of pH, bicarbonate 261 

([HCO3
-] in mmol∙L-1) and lactate ([La]). Whole blood [La] was determined enzymatically 262 

using the same lactate analyser as in the first session while blood pH and [HCO3
-] were 263 

measured by direct potentiometry using an i-STAT® handheld analyser (Abbott Point of 264 

Care, Princeton, USA) immediately after collection. The maximal lactate concentration 265 

([La]max), the minimal pH value (pHmin) and the minimal bicarbonate ions concentration 266 

([HCO3
-]min) were identified. Mean power output (MPO in W) was calculated over the entire 267 

test and individual AOD (in L O2 Eq.) was determined according to the procedure described 268 

below.  269 

 270 

Measurements and calculations   271 

Accumulated oxygen deficit 272 

 AOD was determined by subtracting accumulated O2 uptake (the measured O2 uptake 273 

integrated over time) from accumulated O2 demand (the estimated O2 demand integrated over 274 

time). In accordance with Green and Dawson (1996), oxygen demand was extrapolated using 275 

the equation of the V̇O2-power output linear regression obtained during the incremental test 276 

and considering the individual value of V̇O2rest (i.e., V̇O2 measured during a period of three 277 

minutes before the test). The squared Bravais-Pearson correlation coefficients of linear 278 

relationships between V̇O2 and power output ranged between 0.92 and 0.99 (mean ± SD: 0.98 279 

± 0.02). Because the present study concerned all-out exercise, O2 demand was calculated 280 

from instantaneous power output (recorded stroke by stroke) rather than mean power output 281 

sustained during exercise (i.e., MPO) as initially proposed by Medbø et al. (1988). 282 

 283 

 284 
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Allometric modelling procedure 285 

 As LBM and age may have influenced the capacity to supply non-oxidative energy, 286 

we further investigated the influence of these two factors on AOD through a multiplicative 287 

allometric model proposed by Nevill and Holder (1994). This procedure considers the 288 

influence of LBM and age on AOD as follows: 289 

 290 

AOD = LBMb ∙ exp (a + c ∙ age) ∙ 𝜀𝜀  (Eq. 1) 291 

 292 

where a is the proportionality coefficient, b and c are the scaling factors associated with LBM 293 

and age, respectively, and 𝜀𝜀 is the normally disturbed error. The statistical approach to 294 

allometry is to use a multiple logarithmic transformation, as previously done by Carvalho et 295 

al. (2012), as follows: 296 

 297 

log (AOD) = b ∙ log (LBM) + a + c ∙ age + log 𝜀𝜀 (Eq. 2) 298 

 299 

where b and c are the slopes of the multiple linear regression. These slopes are calculated by 300 

ordinary multiple regression analysis where b and c are equal to the scaling factors. 301 

 302 

Statistical analysis 303 

 Statistical procedures were performed using Statistica 8.0 software (Statsoft, Inc., 304 

USA). Descriptive statistics were expressed as mean ± standard deviation (SD) by age group 305 

(group 1: 10-11.9 yr, group 2: 12-13.9 yr, group 3: 14-15.9 yr, group 4: 16-17.9 yr) and sex, 306 

as proposed by Doré et al. (2005). Data were screened for normality of distribution and 307 

homogeneity of variances using a Shapiro-Wilk test and the Levene’s test, respectively. Two-308 

way ANOVA was used to examine the effects of sex and age group on AOD and for 309 
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comparative purposes AOD in ratio with BM. When ANOVA revealed a main or interaction 310 

significant effect, an HSD Tukey’s post-hoc test was applied to test the discrimination 311 

between means. The effect size and statistical power have also been reported. The effect size 312 

was assessed using the partial eta-squared (η2) and ranked as follows: ∼ 0.01 = small effect, 313 

∼ 0.06 = moderate effect, ≥ 0.14 = large effect (Cohen 1969). Linear regression models 314 

between age, LBM, AOD, and MPO were fitted by the least-squares method by considering 315 

boys and girls separately, and the squared Bravais-Pearson determination coefficients (r2) of 316 

these linear regression models were calculated. The linear regressions between age, LBM and 317 

AOD were established in order to check the effects of age and LBM on AOD and then justify 318 

the use of age and LBM as scaling factors through the multiplicative allometric model. The 319 

slopes of relationships between AOD and MPO were compared between girls and boys using 320 

an analysis of covariance (ANCOVA). This procedure was done with an adjustment on x-321 

axis (AOD) since estimation error could be greater on AOD than MPO (Brace 1977). The 322 

statistical significance level was set at 5% (p < 0.05).  323 

 324 

RESULTS 325 

Participants’ physical and fitness characteristics 326 

 Participants’ characteristics are described by age group and sex in Table 1. Statistical 327 

analysis revealed no significant sex x age group interaction effect for age [F (3, 66) = 1.29, p = 328 

0.28, η2 = 0.06, power = 0.33]. However, there were significant sex x age group interaction 329 

effects for height [F (3, 66) = 4.83, p < 0.01, η2 = 0.18, power = 0.89], BM [F (3, 66) = 6.55, p < 330 

0.001, η2 = 0.23, power = 0.96], LBM [F (3, 66) = 9.29, p < 0.001, η2 = 0.30, power = 0.99], 331 

and V̇O2max [F (3, 65) = 8.69, p < 0.001, η2 = 0.29, power = 0.99]. No sex-related significant 332 

difference was observed for height, BM, LBM and V̇O2max before the age of 14 years. 333 

However, between 14.0 and 17.9 years, boys exhibited significantly higher values for height, 334 
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BM, LBM and V̇O2max. Statistical analysis also revealed a significant sex effect for body fat 335 

percentage [F (1, 66) = 175.5, p < 0.001, η2 = 0.73, power = 1.00]. Girls displayed significantly 336 

higher values of body fat percentage than boys between 10.0 and 17.9 years (p < 0.01, at 337 

least). 338 

- Please insert Table 1 near here – 339 

 340 

Determination coefficients and allometric exponents  341 

Age was positively correlated to LBM in boys (r2 = 0.62, p < 0.001) and girls (r2 = 342 

0.13, p < 0.05). Age was also positively correlated to AOD in boys (r2 = 0.72, p < 0.001) and 343 

girls (r2 = 0.23, p < 0.01). In addition, LBM was positively associated with AOD in boys (r2 = 344 

0.75, p < 0.001) and girls (r2 = 0.22, p < 0.01), and with MPO in boys (r2 = 0.86, p < 0.001) 345 

and girls (r2 = 0.47, p < 0.001).  346 

 Allometric scaling exponents a, b, and c for AOD obtained from the multiple 347 

procedure (i.e., Eq. 1) were -3.99, 1.03, and 0.08 in boys. The corresponding values in girls 348 

were -2.62, 0.78, and 0.04, respectively.   349 

 350 

Accumulated Oxygen Deficit (AOD) 351 

 AOD values are displayed in absolute terms (L O2 Eq.) and in ratio with BM (mL O2 352 

Eq.·kg-1BM) as well as with allometric exponents for LBM and age [L O2 Eq. / (kg LBMb· 353 

exp(a + c · age))] by age group and sex in Figure 1. Regardless of sex, AOD increased with 354 

age whether in absolute [F (3, 66) = 31.49, p < 0.001, η2 = 0.59, power = 1.00] or in ratio with 355 

BM [F (3, 66) = 13.44, p < 0.001, η2 = 0.38, power = 0.99]. Two-way ANOVA also revealed a 356 

significant sex x age group interaction effect for absolute AOD [F (3, 66) = 10.84, p < 0.001, η2 357 

= 0.33, power = 0.99] and AOD expressed in ratio with BM [F (3, 66) = 2.79, p = 0.05, η2 = 358 

0.11, power = 0.64]. Post-hoc tests showed significantly higher values for absolute AOD and 359 
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AOD in ratio with BM unit in boys than girls between 14.0 and 17.9 years (p < 0.001). 360 

However, there was neither a significant age effect [F (3, 66) = 1.12, p = 0.345, η2 = 0.05, 361 

power = 0.29] nor a sex x age group interaction effect [F (3, 66) = 0.22, p = 0.885, η2 = 0.01, 362 

power = 0.08] for AOD expressed with allometric exponents (LBM and age).   363 

 364 

- Please insert Figure 1 near here - 365 

 366 

MPO and post-exercise blood responses 367 

Mean power output (MPO) and post-exercise extreme blood responses ([La]max, 368 

pHmin, [HCO3
-]min) are described by age group and sex in Table 2. Two-way ANOVA showed 369 

significant sex x age group interaction effects for MPO [F (3, 66) = 13.4, p < 0.001, η2 = 0.38, 370 

power = 0.99] and [La]max [F (3, 66) = 3.78, p < 0.05, η2 = 0.15, power = 0.79] but not for blood 371 

pHmin [F (3, 64) = 2.0, p = 0.11, η2 = 0.09, power = 0.51] and [HCO3
-]min [F (3, 61) = 0.34, p = 372 

0.799, η2 = 0.02, power = 0.11]. MPO and [La]max significantly increased with increasing age 373 

and values were significantly higher between 16.0 and 17.9 years for [La]max (p < 0.001) and 374 

between 14.0 and 17.9 years for MPO (p < 0.001). 375 

 376 

- Please insert Table 2 near here - 377 

 378 

Relationships between AOD and MPO 379 

The relationships between AOD (L O2 Eq.) and MPO (W) in boys and girls are 380 

displayed in Figure 2. Significant positive relationships were observed between AOD and 381 

MPO in boys (r2 = 0.89, p < 0.001) and girls (r2 = 0.41, p < 0.001). The slopes of 382 

relationships between AOD and MPO were not significantly different between both sexes [F 383 

(1, 70) = 2.30, p = 0.13, η2 = 0.03, power = 0.32]. 384 
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 385 

- Please insert Figure 2 near here – 386 

 387 

DISCUSSION 388 

The purposes of the present study were to determine during childhood and 389 

adolescence (i) the effect of sex on changes in non-oxidative metabolism, as quantified by 390 

AOD, and (ii) the importance of AOD on performance with respect to age and sex. The main 391 

results confirm our hypotheses since boys exhibited significantly higher AOD values than 392 

girls from the age of 14 years, regardless of whether AOD was expressed in absolute terms or 393 

in ratio with BM. However, when AOD was analysed in relation to LBM and age in a 394 

multiplicative allometric model, a significant difference was no longer observed between 395 

girls and boys. In addition, AOD was positively associated with mean power output (MPO), 396 

but with less evidence in girls because of a smaller change in LBM. These data show, for the 397 

first time, the major role of concurrent changes in LBM and age in the sexual differentiation 398 

of non-oxidative metabolism during childhood and adolescence. They also show the 399 

importance of non-oxidative metabolism on performance during high-intensity whole-body 400 

exercise (i.e., MPO) from childhood into adolescence, more particularly in boys. Taken 401 

together, the present data provide new insights into the development and aetiology of non-402 

oxidative metabolism and performance during childhood and adolescence, especially in girls 403 

who have been largely understudied compared to boys (McManus and Armstrong 2011). 404 

 405 

 The results of the present study show a significant age effect on AOD suggesting an 406 

increase in non-oxidative energy production during childhood and adolescence in both sexes; 407 

however, this effect was found to be less evident in girls. This study is the first to establish an 408 

age effect on AOD in girls during childhood and adolescence. In the male population, some 409 
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studies showed a difference in AOD between prepubertal boys and young men; however, 410 

these studies were not designed to test the effect of age and employed small sample numbers 411 

with a lack of continuity from childhood into adolescence (Hebestreit et al. 1998; Leclair et 412 

al. 2011). The results also show sex-related differences in AOD to only be present from the 413 

age of 14 years. These results are consistent with previously published studies of AOD in 414 

ratio with BM, which showed with small samples no sex differences in AOD between 9-11-415 

year-olds (Carlson and Naughton 1993; Naughton and Carlson 1995; Berthoin et al. 2003) 416 

but significantly higher AOD values in boys than girls at 14-15 years (Naughton et al. 1997).  417 

  418 

Sex differences in body composition exerted a strong influence on the comparison of 419 

AOD between groups. Indeed, when AOD was expressed in ratio with BM, boys exhibited 420 

significantly higher AOD values than girls from the age of 14 years. Multiplicative allometric 421 

modelling, however, highlighted that when age is considered concurrently with LBM, the 422 

difference in AOD between girls and boys decreased (p = 0.885) with age having a greater 423 

effect on AOD in boys than girls (c: 0.08 vs. 0.04, respectively). Moreover, when age was 424 

considered in the allometric procedure, AOD increased proportionally more with LBM in 425 

boys (b = 1.03) than girls (b = 0.78). This is likely explained by the closer relationships 426 

obtained between age, LBM and AOD in boys. Taken together, these results show that age 427 

and LBM both play a major role in explaining sex-related differences in the non-oxidative 428 

energy production during high-intensity exercise from the age of 14 years.   429 

 430 

From a physiological perspective, sex-related changes in AOD from the age of 14 431 

years could be attributed to hormonal factors and changes in skeletal muscle morphology due 432 

to growth and specifically maturation. More explicitly, the greater increase in AOD in boys 433 

could be ascribed to their higher production of androgen hormones (e.g., testosterone) at the 434 
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time of puberty (Korth-Schutz et al. 1976; Fahey et al. 1979). This could increase more 435 

favorably muscle mass and the specific area of type II fibres and thereby the activity of non-436 

oxidative metabolism. This hypothesis is supported by some earlier studies showing 437 

significant correlations between salivary or blood testosterone concentration, type II fibre 438 

area (Mero 1988) and peak lactate concentration in boys (Mero 1988; Falgairette et al. 1991). 439 

Oertel (1988) also showed that at least from the age of 15 years, the type II fibre area/type I 440 

fibre area ratio in the vastus lateralis and deltoid muscles increases more in boys than girls. In 441 

addition, although there is only one study that has compared the muscle enzyme activity 442 

during growth and maturation between girls and boys, it is likely that the activity of enolase 443 

(i.e., glycolytic enzyme) in the vastus lateralis is greater in boys than girls at 13-15 years of 444 

age (Haralambie 1982). This sex-related difference in enzyme activity is consistent with the 445 

data reported by Cumming et al. (1985) showing a higher accumulation of serum lactate after 446 

maximal exercise in boys compared to girls from the age of 15 years. The results of the 447 

present study confirm these data since there was a higher increase in blood lactate 448 

concentration and a greater decrease in blood pH and bicarbonate concentration after the 60-s 449 

all-out test in boys compared to girls from the age of 16 years. However, sex-related 450 

differences were only significant for the maximal blood lactate concentration.  451 

 452 

The results of the present study also show that AOD significantly accounted for the 453 

mean power output produced during the 60-s all-out test both in girls and boys. This indicates 454 

that non-oxidative metabolism could be a major determinant of performance during high-455 

intensity exercise during growth. These results are similar to those of Leclair et al. (2011) 456 

which showed a significant positive correlation between AOD expressed in ratio with BM 457 

and time to exhaustion during cycle exercise at 100% of maximal aerobic power in 9-11-458 

year-old boys. However, the coefficient of determination was lower in girls (r2 = 0.41) than 459 
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boys (r2 = 0.89) indicating that AOD is less important in girls in the explanation of the power 460 

produced during high-intensity exercise. This may be ascribed to the fact that LBM, which is 461 

the main discriminatory factor for AOD and MPO, varied much less in girls than boys (+19% 462 

vs. +81%, respectively) and the lower range in LBM values in girls reduced the coefficient of 463 

determination (Chen and Popovich 2002). Indirectly, this finding supports the assertion that 464 

LBM has a strong influence on AOD and MPO during high-intensity exercise, but this effect 465 

is more moderate in girls than boys. Finally, the slopes of relationships between AOD and 466 

MPO were not significantly different between girls and boys, suggesting no difference in 467 

“anaerobic delta efficiency” between both sexes. However, this finding remains to be 468 

confirmed due to the high variance of AOD in girls.   469 

 470 

Strengths and limitations 471 

This study presents cross-sectional data and would have been enhanced with measures 472 

of maturity status. However, it has been demonstrated that once age and LBM have been 473 

controlled for in multiplicative allometric analyses, maturity status does not make an 474 

additional, significant contribution to explaining the development of either peak aerobic or 475 

peak anaerobic power of 11-18-year-olds (Armstrong and Welsman 2020a, b). The 476 

estimation of LBM from BM and skinfold thicknesses rather than its direct measurement 477 

using more sophisticated technology can also be criticised, but this methodology is well-478 

established in paediatric exercise physiology (Rowland et al. 1997; Janz et al. 1998; 479 

Armstrong and Welsman 2020a, b). Moreover, direct measures of the body fat of children 480 

and adolescents have recently been showed to vary widely across laboratory techniques 481 

(Ferri-Morales et al. 2018). Finally, we can wonder about the generalization of the present 482 

findings to the whole of the pediatric population since rowing is a specific activity involving 483 
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a larger muscle mass during exercise when compared with cycling or running, for instance 484 

(Gastin 2001; Maciejewski et al. 2013). 485 

A unique strength of the present study lies in the adoption for the first time of 486 

allometric modelling to analyse youth AOD. This approach has provided new insights into 487 

the influence of the contribution of concurrent changes in age and LBM on AOD in 488 

childhood and adolescence.  489 

 490 

CONCLUSION 491 

 The results of the present study show for the first time that energy production derived 492 

from non-oxidative metabolism, quantified by AOD during high-intensity exercise, increases 493 

with age with boys differing from girls from the age of about 14 years, due to their greater 494 

gain in LBM. Boys exhibited significantly higher values of AOD than girls from the age of 495 

14 years but multiplicative allometric modelling showed that when age is considered 496 

concurrently with LBM, the sex difference in AOD is reduced during childhood and 497 

adolescence. Finally, AOD was found to be a key determinant of performance during high-498 

intensity exercise during childhood and adolescence, particularly in boys owing to their 499 

greater LBM gain at the time of puberty. 500 

 501 
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Table 1. Participants’ physical and fitness characteristics (n = 74). 

 

Group 1 (n=11) 
10 – 11.9 yr  

Group 2 (n=17) 
12 – 13.9 yr  

Group 3 (n=27) 
14 – 15.9 yr  

Group 4 (n=19) 
16 – 17.9 yr  

Girls 
(n=6) 

Boys  
(n=5) 

Girls 
(n=6) 

Boys 
(n=11) 

Girls 
(n=15) 

Boys 
(n=12) 

Girls 
(n=8) 

Boys 
(n=11) 

Age (yr) 11.0±0.7 11.5±0.3 12.6±0.7 13.2±0.3 14.8±0.4 14.9±0.6 16.0±0.8 16.9±0.5 

Height (m) 1.55±0.05 1.51±0.13 1.63±0.08 1.64±0.08  1.66±0.04  1.79±0.07 ** 1.65±0.05  1.78±0.07 ** 

BM (kg) 48.6±4.8 41.1±8.8 58.8±11.7 53.6±8.7 58.4±6.2 65.6±9.4  56.7±4.5  70.0±5.7 ** 

Body fat (%) 24.9±6.1 15.7±1.7 ** 25.2±5.0  12.9±5.6 *** 21.8±3.5  6.5±1.9 *** 23.1±1.8  10.4±2.0 *** 

LBM (kg) 36.3±2.7 34.5±6.9 43.6±7.0 46.7±8.6 45.5±4.5  61.3±8.8 *** 43.5±3.7  62.6±4.9 *** 

V̇O2max (L·min-1) 1.99±0.2 2.30±0.5 2.32±0.2 2.90±0.7 2.63±0.3  4.14±0.5 *** 2.89±0.3  4.53±0.3 *** 

Values are presented as mean ± SD. BM: body mass; LBM: lean body mass; V̇O2max: maximal oxygen uptake. **, and ***: significantly different from 

girls within each age group at p < 0.01 and p < 0.001, respectively. 

 



Table 2. Mean power output and post-exercise extreme blood responses obtained after a 60-s all-out test in girls (n = 35) and boys (n = 39). 

 

Group 1 (n=11) 
10 – 11.9 yr  

Group 2 (n=17) 
12 – 13.9 yr  

Group 3 (n=27) 
14 – 15.9 yr  

Group 4 (n=19) 
16 – 17.9 yr  

Girls  
(n=6) 

Boys  
(n=5) 

Girls  
(n=6) 

Boys  
(n=11) 

Girls  
(n=15) 

Boys  
(n=12) 

Girls  
(n=8) 

Boys  
(n=11) 

MPO (W) 153±16 178±45 219±40 276±71 † 261±33 †† 440±76 †††, *** 283±43 ††† 520±55 †††, *** 

[La]max (mmol·L-1) 8.2±1.0 9.3±1.4 10.5±0.7 11.4±0.8 12.3±2.0 ††† 14.1±1.5 ††† 12.3±1.8 ††† 16.4±1.9 †††, ** 

pHmin 7.27±0.02 7.27±0.03 7.21±0.05 7.22±0.02 7.20±0.05  7.17±0.05  7.19±0.04  7.12±0.05 

[HCO3-]min (mmol·L-1) 15.9±1.0 14.3±1.6 12.4±1.4 11.0±2.3 12.1±2.2  9.6±2.1  11.4±1.7 9.7±1.5 

MPO: mean power output; [La]max: maximal blood lactate concentration; pHmin: minimal blood pH; [HCO3
-]min: minimal blood bicarbonate ions 

concentration. Values are presented as mean ± SD. †, ††, †††: significantly different from the group 1 within each sex category at p < 0.05, p < 0.01, 

and p < 0.001. *, **, and ***: significantly different from girls within each age group at p < 0.05, p < 0.01, and p < 0.001 respectively.  
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FIGURE LEGENDS 

Figure 1. AOD expressed in absolute values (Panel A), in ratio with BM (Panel B), and with 

allometric exponents (Panel C) by age group and sex (girls in white bars and boys in black 

bars). 

 

Figure 2. Relationships between AOD (L O2 Eq.) and MPO (W) in girls (white circles and 

dash line) and boys (black circles and full line). The 95% confidence intervals are shown in 

gray. The regressions obtained between AOD and MPO were adjusted on x-axis (AOD) since 

estimation error could be greater on AOD than MPO. 
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Boys n = 39, r2 = 0.89, p < 0.001
Girls n = 35, r2 = 0.42, p < 0.001
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