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In the past decades, researchers have extensively studied (elite) athletes’ physiological

responses to understand how to maximize their endurance performance. In endurance

sports, whole-body measurements such as the maximal oxygen consumption, lactate

threshold, and efficiency/economy play a key role in performance. Although these

determinants are known to interact, it has also been demonstrated that athletes rarely

excel in all three. The leading question is how athletes reach exceptional values in

one or all of these determinants to optimize their endurance performance, and how

such performance can be explained by (combinations of) underlying physiological

determinants. In this review, we advance on Joyner and Coyle’s conceptual framework

of endurance performance, by integrating a meta-analysis of the interrelationships, and

corresponding effect sizes between endurance performance and its key physiological

determinants at the macroscopic (whole-body) and the microscopic level (muscle

tissue, i.e., muscle fiber oxidative capacity, oxygen supply, muscle fiber size, and fiber

type). Moreover, we discuss how these physiological determinants can be improved

by training and what potential physiological challenges endurance athletes may face

when trying to maximize their performance. This review highlights that integrative

assessment of skeletal muscle determinants points toward efficient type-I fibers

with a high mitochondrial oxidative capacity and strongly encourages well-adjusted

capillarization and myoglobin concentrations to accommodate the required oxygen

flux during endurance performance, especially in large muscle fibers. Optimisation of

endurance performance requires careful design of training interventions that fine tune

modulation of exercise intensity, frequency and duration, and particularly periodisation

with respect to the skeletal muscle determinants.

Keywords: V̇O2max, training, metabolism, aerobic performance, muscle fiber type, oxygen transport, mitochondria,

hypertrophy
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INTRODUCTION

Endurance athletes compete against each other in a race
to finish first. Independently of the sport performed, these
athletes aim to reach the finish line as quickly as possible,
by producing the highest average velocity over the course of
the event. Endurance competitions typically range from ∼3
to 230min within sports such as running, swimming, speed
skating, skiing, and cycling (Riegel, 1981), excluding ultra-
endurance competitions. Within such performance duration,
world records highlight a distinct linear log-log relationship
between finishing times and distance covered for many
endurance sports (Lietzke, 1954; Riegel, 1981). The slope of
these equations quantifies human endurance, the highest average
velocity that is sustained over a given time period or the longest
time a given velocity is sustained (Lietzke, 1954; Riegel, 1981;
Billat et al., 1999). Later work also assessed the relationships
between power and exercise duration, which presumably link
more directly to the athlete’s underlying physiology (Billat
et al., 1999). Such power-duration profiles are widely applied
in endurance sports (e.g., cycling) to determine endurance
performance and the physical/physiological signature of an
athlete (Pinot and Grappe, 2011; Sanders and Erp van, 2020).
In a conceptual framework, Joyner and Coyle (2008) already
described “potential” physiological determinants of endurance
performance. In this review, we advance on this framework,
now including a meta-analysis highlighting the (effect size
of) interrelationships between endurance performance and
key physiological determinants of endurance performance at
the macroscopic and microscopic level. Moreover, we discuss
how these physiological determinants can be improved by
training. Note that this mini review focuses mainly on structural
and functional muscle (fiber) characteristics rather than other
relevant topics for endurance performance, such as pulmonary
or circulatory physiology or nutrition.

WHOLE-BODY DETERMINANTS OF
ENDURANCE PERFORMANCE

Already in 1925, A.V. Hill recognized that fatigue was underlying
the decline in velocity with increasing race distance (Hill, 1925).
He speculated that performance was determined by physiological
characteristics related to energetic costs, oxygen demands, and
supply, and oxygen debt (or racing economy). Almost a century
later, Joyner and Coyle (2008) highlighted the importance of
the maximal oxygen uptake (V̇O2max), lactate threshold, and
efficiency/economy in endurance performance. The V̇O2max and
lactate threshold interact to determine how long a given rate
of aerobic and anaerobic metabolism can be sustained (i.e.,
performance V̇O2) by an athlete, whereas efficiency determines
the velocity or power that can be achieved with a given amount
of energy consumption (Joyner and Coyle, 2008).

Elite endurance athletes may score exceptionally high on one
(or several) of these three determinants. Upper limits for absolute
V̇O2max have been reported in rowers and cross-country skiers
(7.0–7.5 L·min−1 in males and 5.0− 5.5 L·min−1 in females) and

for relative V̇O2max in cyclists, runners, and cross-country skiers
(up to ∼90 mL·kg−1

·min−1 in males and∼80 mL·kg−1
·min−1

in females) (Haugen et al., 2018; van der Zwaard et al., 2018c).
The (first) lactate threshold discriminates moderate- from heavy-
intensity exercise and can be determined by gas exchange and/or
blood lactate measurements (Poole et al., 2020). Typically, values
approximate 75–85% of V̇O2max in athletes (Coyle et al., 1988;
Seiler and Kjerland, 2006; Joyner and Coyle, 2008). Knowing that
all Olympic endurance events are decided at intensities above
85% of V̇O2max (Joyner and Coyle, 2008), athletes benefit from
being relatively fatigue resistant at high exercise intensities and
in this context a high lactate threshold can be very advantageous.
As for gross efficiency, values generally range ∼20–23% in elite
cyclists (Jeukendrup et al., 2003; Ettema and Lorås, 2009) and
∼18–19% in elite rowers (Bourdin et al., 2004). In world-class
cyclists, Lucía et al. (2002b) reported efficiency values up to
∼24.5–28.1%, although possible methodological issues may be
at play (Jeukendrup et al., 2003). Even in elite athletes, scoring
high on all three determinants remains unusual, as illustrated
by the inverse relationship between V̇O2max and gross efficiency
(Lucía et al., 2002a). However, interestingly, a two-time Tour de
France champion was able to display both a very high V̇O2peak

(84 mL·kg−1
·min−1) and gross efficiency (23.2%), together with

a reasonably high lactate threshold (∼81% of V̇O2peak), which is
likely contributing to his athletic success (Bell et al., 2017).

THE OVERLOOKED UNDERLYING
PHYSIOLOGY: SKELETAL MUSCLE
DETERMINANTS OF ENDURANCE
PERFORMANCE

Discussing the physiology of champions, Joyner and Coyle (2008)
already suggest that several anthropometrical, cardiac, and
skeletal muscle characteristics underlie endurance performance
and its whole-body determinants. In particular, skeletal muscular
properties could explain differences in (whole-body determinants
of) endurance performance, and have been almost exclusively
derived from invasive muscle biopsies (Bergstrom, 1975).
Although not commonly practiced with elite athletes, biopsies
provide valuable and reproducible data on human muscle
physiology using only a few 100 muscle cells (Ekblom,
2017), such as on muscle fiber type, cross-sectional area,
mitochondrial volume density or function and capillarization,
and can be safely obtained (Tarnopolsky et al., 2011). Yet, the
interrelationships and corresponding effect sizes between these
physiological determinants and endurance performance remain
largely overlooked.

Muscle Fiber Type
Muscle fiber type is important for endurance, and its
characteristics have been reviewed in detail elsewhere (Schiaffino
and Reggiani, 2011). Researchers in the 1970–80s extensively
investigated muscle fiber type composition in athletes (Gollnick
et al., 1972; Costill et al., 1976; Komi et al., 1977; Saltin et al.,
1977; Hagerman and Staron, 1983; Tesch et al., 1984; Tesch
and Karlsson, 1985; Yazvikov et al., 1988). They discovered
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that long-distance runners, rowers, swimmers, and kayakers
predominantly had slow type-I muscle fibers (∼70–80%), in
greater proportion than long-distance speed skaters, middle-
distance runners, skiers and cyclists (∼50–60%), jumpers, and
throwers (∼40–50%), weight lifters, wrestlers, power lifters,
and sprint speed skaters (∼25–45%) or sprint runners (∼25%).
Recent literature confirmed that a champion sprint runner had
only a limited proportion of type-I fibers (29%), but a high
percentage of powerful type-II fibers (Trappe et al., 2015). Elite
road and team pursuit cyclists likely have a higher proportion
of type-I fibers than previously thought (∼65–75%) (Sjøgaard,
1984; Coyle et al., 1991; Aagaard et al., 2011; van der Zwaard
et al., 2018b), similar to that of other endurance athletes. Of note,
distinct sport-dependent (e.g., kayaking vs. cycling vs. running)
differences in muscle fiber composition have been reported
between arm and leg muscles (Gollnick et al., 1972; Tesch and
Karlsson, 1985), illustrating the sport-specific requirements and
long-term training effects. Given the fact that high proportions
of type-I fibers are suggested to display greater mechanical
efficiency at common movement frequencies (i.e., 1–2Hz, e.g.,
cycling between 60 and 120 rpm) that are close to the type-I
fiber’s peak efficiency velocity (He et al., 2000; Joyner and Coyle,
2008), a higher percentage of type-I fibers would relate to a
higher gross efficiency (Coyle et al., 1992; Horowitz et al., 1994),
and therefore contributes to a higher endurance performance
(Horowitz et al., 1994). Nowadays, non-invasive techniques
such as 1H-MRS measurements of muscle carnosine content
are also used to estimate type-I and II muscle typology, thereby
confirming prior muscle biopsy-based findings across athletes
(Baguet et al., 2011; Bex et al., 2017; Lievens et al., 2020, 2021).

Muscle Fiber Cross-Sectional Area
Muscle fiber cross-sectional area (FCSA) contributes to the
muscle’s force production and is regulated by protein synthesis
and degradation (van Wessel et al., 2010). In humans, FCSA
typically ranges from 3,000 to 10,000 µm2 (Gollnick et al., 1972;
Costill et al., 1976; Saltin et al., 1977; Sjøgaard, 1984; Tesch and
Karlsson, 1985; Aagaard et al., 2011; van der Zwaard et al., 2018b)
with generally smaller size in type-I compared to type-II fibers
(Gollnick et al., 1972; Costill et al., 1976). Accordingly, endurance
athletes report smaller values (∼6,000 µm2) compared to track
sprinters (∼8,000 µm2) and weight/power lifters (∼9,000 µm2).
Yet, the relative muscle area that is occupied by type-I fibers is
considerably larger in endurance compared to non-endurance
athletes (Gollnick et al., 1972; Costill et al., 1976). Notably, in
some elite cyclists, type-I FCSA may even be larger than FCSA
of their type-II fibers (Sjøgaard, 1984). In this view, having
large oxidative muscle fibers theoretically benefits endurance
performance. In practice, however, FCSA appears negatively
related to endurance performance (Coyle et al., 1988; Bishop
et al., 2000) and lactate threshold (Bishop et al., 2000) in cyclists.
Themuscle fiber type-fiber size paradoxmay explain this through
a profound inverse relationship between FCSA and muscle fiber
oxidative capacity across animal species (van der Laarse et al.,
1998; van Wessel et al., 2010) and in competitive cyclists (van
der Zwaard et al., 2018b). This illustrates a trade-off between both

traits, whichmakes it difficult to concurrently optimize FCSA and
muscle fiber oxidative capacity (Figure 1).

Mitochondrial Oxidative Capacity
Muscle fiber oxidative capacity resembles the mitochondria’s
ability to deliver ATP using oxygen, which provides the
necessary energy to sustain prolonged exercise. Within the
mitochondria, energy is delivered by oxidative phosphorylation,
consisting of complexes that form the respiratory chain and
ATP synthase. Researchers have examined the aerobic enzyme
activities of these complexes and of enzymes supporting
the Krebs cycle [e.g., succinate dehydrogenase, cytochrome c
oxidase, citrate synthase (Gollnick et al., 1972; Costill et al.,
1976; Saltin et al., 1977; Blomstrand et al., 1997)], which
are highly interrelated (Larsen et al., 2012), as well as the
mitochondrial volume density and location of mitochondria
in locomotor muscles (Hoppeler et al., 1973; Ørtenblad et al.,
2018). The total mitochondrial oxidative capacity can be
assessed in permeabilised muscle fibers using high-resolution
respirometer [i.e., oxidative phosphorylation rates, OXPHOS
(Pesta and Gnaiger, 2012; Gnaiger and Group, 2020)]. Also,
total mitochondrial oxidative capacity can be estimated for single
muscle fibers using quantitative histochemistry of one of the
aerobic enzymes: succinate dehydrogenase (SDH), an enzyme
in the Krebs cycle, and complex II of the electron transport
chain. Even though the enzyme is not rate limiting for the
flux through the Krebs cycle (Blomstrand et al., 1997), SDH
activity has shown to be proportional to the ex vivo V̇O2max

of intact single muscle fibers and myocardial trabeculas in
hyperoxia (van der Laarse et al., 1989; Des Tombe et al., 2002).
Interestingly, both OXPHOS and SDH activity have also shown
to be closely related to the V̇O2max of quadriceps muscles during
one-legged exercise (Blomstrand et al., 1997; Jacobs and Lundby,
2021) and to body-mass-specific V̇O2max in humans (Costill
et al., 1976; van der Zwaard et al., 2016a; Jacobs and Lundby,
2021). Recent observations in 68 cardiac patients, controls and
elite cyclists demonstrated that mitochondrial oxidative capacity
determined from SDH activity even scales proportionally with
body-mass-specific V̇O2max during cycling, ranging 9.8–79.0
mL·kg−1

·min−1 (van der Zwaard et al., 2016a). The V̇O2max

measured during cycling was on average 90% of mitochondrial
oxidative capacity (van der Zwaard et al., 2016a), indicating that
oxygen supply limitations to themitochondria are likelymarginal
at this high-intensity exercise.

Capillarization
Muscle oxygen supply capacity to the muscle fibers is critical to
sustain endurance performance. Endurance athletes are known
for their well-developed capillarization compared to untrained
or non-endurance athletes (Saltin et al., 1977; Sjøgaard, 1984;
Tesch et al., 1984; Coyle et al., 1988; Aagaard et al., 2011; van der
Zwaard et al., 2018a,b), demonstrating high number of capillaries
around the fiber (∼5–8), capillary-to-fiber ratios (∼2.5–3.0), and
capillary densities (∼400–700 caps/mm2). Whereas, untrained
individuals have 3–4 capillaries around the fiber (Saltin et al.,
1977), professional road cyclists (Sjøgaard, 1984) and Olympic
track cyclist (van der Zwaard et al., 2018b) displayed values as
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FIGURE 1 | Muscle fiber size (FCSA) and muscle fiber oxidative capacity (V̇O2max) are inversely related across animal species [r = −0.98, P < 0.001 (van der Laarse

et al., 1998; van Wessel et al., 2010)] and in competitive cyclists [r = −0.50, P < 0.05 (van der Zwaard et al., 2018b)]. From left to right, animals include the shrew,

mouse, rat, rabbit, human, African clawed frog (Xenopus laevis), and frog (Rana temporaria). Figure is created based on data from van der Laarse et al. (1998), van

Wessel et al. (2010), van der Zwaard et al. (2018b).

high as 9 capillaries around the fiber. High capillarization has
been associated with a high V̇O2max (Saltin et al., 1977; Ingjer,
1978). Also, in competitive cycling, high capillary densities were
strongly related to prolonged time-to-fatigue (Coyle et al., 1988).
For cyclists displaying a similar lactate threshold, those with
higher capillary densities demonstrated higher time-to-fatigue
than those with lower capillary densities (Coyle et al., 1988).
Importantly, capillarization may be a solution to the fiber type-
fiber size paradox, given that cyclists with better developed
capillarization were able to combine a larger FCSA with higher
mitochondrial oxidative capacity (van der Zwaard et al., 2018b).
Accordingly, rowers also possess large and highly oxidative
muscle fibers, presumably because of their high capillary density
(Larsson and Forsberg, 1980; Hagerman and Staron, 1983).

Myoglobin
Not only capillarization, but also myoglobin contributes to
muscle oxygen supply, as it transports oxygen within the
muscle fibers. Literature on myoglobin content is scarce,
especially in athletes. Myoglobin concentrations [Mb] have
been reported in men and women obtained from homogenized

muscle samples (Möller and Sylvén, 1981; Jansson and Sylvén,
1983). Alternatively, [Mb] could be determined in individual
muscle fibers using quantitative histochemistry of biopsy sections
(Lee-de Groot et al., 1998; van Beek-Harmsen et al., 2004),
reflecting functional [Mb protein], and have been reported in
cardiac patients and healthy controls (Bekedam et al., 2009),
elite cyclists (van der Zwaard et al., 2018b), and elite hockey
players (van der Zwaard et al., 2018a). [Mb] is typically ∼50%
higher in type-I compared to type-II muscle fibers (Jansson
and Sylvén, 1983; Bekedam et al., 2009; van der Zwaard et al.,
2018a), and this ratio does not seem to alter with training
(van der Zwaard et al., 2018a). Of particular interest is the
interaction of [Mb] and capillarization, as their combination
(1) explained more variance in endurance cycling performance
than capillarization alone (van der Zwaard et al., 2018b), and
(2) explained which elite hockey players were able to combine
a larger FCSA with higher mitochondrial oxidative capacity
(r = 0.68; data from van der Zwaard et al., 2018a). These
findings highlight the value of measuring both capillarization
and functional [Mb] to characterize muscle fiber oxygen
supply capacity.
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Muscle Glycogen Storage
Glycogen is an essential substrate for muscle metabolism during
endurance exercise (Knuiman et al., 2015). It is well-known
that glycogen depletion is strongly associated with muscular
fatigue during endurance exercise (Ørtenblad et al., 2013;
Alghannam et al., 2016), and endurance-trained individuals store
substantially more glycogen in their muscles and can resynthesize
glycogen faster (Piehl, 1974; Hickner et al., 1997). Therefore,
endurance athletes benefit from a high glycogen availability,
particularly in long-lasting endurance events. Interestingly, this
has led to several nutritional-exercise strategies to manipulate
muscle glycogen availability and subsequent cell signaling
pathways regulating skeletal muscle adaptations (Burke et al.,
2018).

AN INTEGRATIVE PERSPECTIVE ON
ENDURANCE PERFORMANCE

We performed a meta-analysis (described in detail in
Supplementary Material 1) to examine how skeletal muscle
characteristics may contribute to endurance performance and
whole-body determinants of endurance performance, of which
the results are summarized in Figure 2. This figure displays
reported relationships and their effect size from previous studies.
Because no single determinant is able to explain all variance in
endurance performance, statistical models have been established
to include interactions between multiple macroscopic and
microscopic determinants (whole-body and/or skeletal muscle,
respectively). In line with the schematic of Joyner and Coyle
(2008), the combination of performance V̇O2 and gross
efficiency could explain >90% of the variance in 1-h cycling in
trained men (Hopker et al., 2013) and 15-km time trial in elite
cyclists (data from van der Zwaard et al., 2018b). Subsequently,
performance V̇O2 was largely explained by a combination of
the first lactate threshold and V̇O2max in these cyclists (86%
explained variance; data from van der Zwaard et al., 2018b).
Also, the combination of cycling efficiency, V̇O2max and the
lactate threshold could explain >75% of the variance in 25-km
cycling performance in trained men (Batterson et al., 2020). In
professional cyclists, long-distance time-trial performance was
highly correlated to the first lactate threshold (Lucía et al., 2004),
and in competitive cyclists, a combination of the first lactate
threshold with capillary density explained 92% of the differences
in time-to-fatigue (Coyle et al., 1988), stressing the importance of
oxidative capacity and oxygen delivery in regulating oxygen flux
necessary to sustain performance. This narrative is supported
by a study in highly-trained cyclists, demonstrating that 78% of
the variance in 26-km time-trial could be explained by oxidative
capacity of skeletal muscle, submaximal lactate concentration
and ability to extract oxygen in skeletal muscle (Jacobs et al.,
2011). Interestingly, recent observations in elite cyclists showed
that 67% of the variance in performance V̇O2 was explained
by skeletal muscle determinants, which are a high muscle
fiber oxidative capacity, high oxygen supply capacity ([Mb] ×
capillary-to-fiber ratio) and a small physiological cross-sectional

area of the M. vastus lateralis (van der Zwaard et al., 2018b).
While confirming the importance of oxygen supply and oxidative
capacity, these results also reveal that muscle architecture [e.g.,
the physiological cross-sectional area (PCSA), the cross-sectional
area of a muscle perpendicular to its muscle fibers], which can be
obtained using non-invasive techniques, such as 3D ultrasound
imaging (Weide et al., 2017), may add novel and valuable
insights into endurance performance. At present, however,
these whole-muscle characteristics have been largely overlooked
as determinants of endurance performance. The finding that
PCSA negatively contributed to performance V̇O2 is in line with
previous observations showing that a large FCSA may negatively
affect endurance performance (Coyle et al., 1988; Bishop et al.,
2000) and the lactate threshold (Bishop et al., 2000), likely
because this increases the diffusion distance of oxygen to the
mitochondria. Importantly, literature suggests that larger muscle
FCSA or PCSA may (partly) be accommodated if the oxygen
supply toward the muscle—capillarization, and myoglobin—is
well-developed (van der Zwaard et al., 2018a,b). Here, non-
invasive measurements with near-infrared spectroscopy may
also provide valuable insights into spatial and temporal matching
of oxygen supply and demand during exercise, and could
explain a large proportion of the differences in endurance
performance (Jacobs et al., 2011; van der Zwaard et al., 2016b;
Batterson et al., 2020). In summary, integrative assessment
of skeletal muscle determinants of endurance performance
points toward optimisation of efficient type-I fibers with a
high mitochondrial oxidative capacity and strongly encourages
well-adjusted capillarization and myoglobin concentrations
to accommodate the required oxygen flux during endurance
performance, especially in a large muscle FCSA or PCSA with
attenuated diffusion of oxygen to the mitochondria.

TRAINING-INDUCED ADAPTATIONS TO
MAXIMIZE ENDURANCE PERFORMANCE

Endurance training shifts velocity/power-duration relationships
to the right, allowing athletes to perform a given distance
faster or to sustain a given velocity longer (Jones and Carter,
2000). As such, endurance training plays a central role
within exercise physiology (van der Zwaard et al., 2020),
with training methods facilitating adaptations in macroscopic
and microscopic physiological determinants in response to
training intensity, duration, frequency, and periodization (Seiler,
2010; Hawley et al., 2018). For example, polarized training
consisting predominantly of low-intensity, long-duration
training along with some high-intensity training, may be
optimal to enhance (whole-body determinants of) endurance
performance (Stöggl and Sperlich, 2014; Tønnessen et al., 2014),
through higher adaptive cellular signaling, gene expression,
and stress responses (Seiler, 2010). Linking training behavior
to molecular adaptations, Seiler (2010) previously suggested
that mitochondrial biosynthesis might be driven through
different pathways depending on exercise duration and intensity.
These pathways include, but are not limited to, sustained
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FIGURE 2 | Overall schematic describing the underlying skeletal muscle determinants of endurance performance and whole-body determinants of endurance

performance. The schematic advances on the theoretical framework by Joyner and Coyle (2008). Based on a meta-analysis of the existing literature, effect sizes of

correlations between these determinants and endurance performance have been summarized in forest plots (see Supplementary Material). Random effect sizes

were calculated based on Fisher’s z transformation of correlations and with between-study variance estimations based on the “more conservative” Sidik-Jonkman

estimator. Effect sizes were interpreted in accordance with Cohen (1992): negligible (r < 0.1), small (r = 0.1–0.29), medium (r = 0.3–0.5), and large (r > 0.5), and

indicated with the symbols N, S, M, and L, respectively. Negative effects are shown in red circles, positive effects in blue circles. Black lines indicate effects of single

whole-body determinants, red lines indicate effects of single muscle determinants and gray lines indicate integrative effects of multiple muscle determinants. *indicates

that limited research is available (i.e., only 1 or 2 studies). Studies included in the meta-analysis:Hoppeler et al. (1973), Booth and Narahara (1974), Hultén et al. (1975),

Costill et al. (1976), Bergh et al. (1978), Foster et al. (1978), Ingjer (1978), Rusko et al. (1978, 1980), Ivy et al. (1980a,b), Gregor et al. (1981), Inbar et al. (1981), Komi

et al. (1981), Nygaard (1981), Zumstein et al. (1983), Coyle et al. (1984, 1988, 1992), Lortie et al. (1985), Neary et al. (1992, 2003), Farrell et al. (1993), Horowitz et al.

(1994), Tonkonogi and Sahlin (1997), Dawson et al. (1998), Bishop et al. (2000), Passfield and Doust (2000), Hansen et al. (2002), Bentley and McNaughton (2003),

Lucía et al. (2004), Mogensen et al. (2006), Baldari et al. (2007), Farina et al. (2007), Hansen and Sjøgaard (2007), Flynn et al. (2009), Iaia et al. (2009), Suriano et al.

(2010), Jacobs et al. (2011), Kohn et al. (2011), Hopker et al. (2013), Jacobs and Lundby (2013), Støren et al. (2013), Hunter et al. (2015), Gifford et al. (2016), van der

Zwaard et al. (2016a, 2018b), Vikmoen et al. (2016), Lundby et al. (2017), Cardinale et al. (2018), Dandanell et al. (2018), Mitchell et al. (2018), Batterson et al. (2020),

Kovács et al. (2020).

contractile activity during long exercise bouts that induces
chronic release of calcium, low energy status (low AMP:ATP
ratio) with high-intensity exercise that increases AMPK and
PGC-1α phosphorylation, and training-induced oxidative stress
and altered redox states that affect PGC-1α, which trigger
mitochondrial adaptations (Hood, 2001; Egan and Zierath,
2013). However, whether training intensity or volume is the
most important to increase mitochondrial oxidative capacity
remains highly debated (Bishop et al., 2019; MacInnis et al.,
2019). Recent evidence suggests that too much high-intensity
training may also adversely affect mitochondrial adaptations
(Granata et al., 2020; Cardinale et al., 2021; Flockhart et al.,

2021). Polarized training may therefore have an advantageous
mix of low- and high-intensity exercise for maximizing
mitochondrial adaptations.

To benefit from this enhanced oxidative capacity, oxygen
supply needs to match oxygen demand (Hepple, 2000), which
requires adaptations in capillary density and/or Mb content.
High-intensity or (repeated-)sprint exercise may induce local
tissue hypoxia (with reduced PO2) leading to stabilization of
the transcription factor HIF-1α, which increases transcription
of genes for capillary growth (Lundby et al., 2009; Egan and
Zierath, 2013). Although controversies may exist (e.g., Millet
and Brocherie, 2020; Siebenmann and Dempsey, 2020), when
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performed in hypoxia, high-intensity training also seems effective
in increasing transcription of VEGF and Mb (Vogt et al., 2001;
Kanatous et al., 2009; Faiss et al., 2013; Brocherie et al., 2018).
Importantly, the prolonged low-intensity exercise in polarized
training could stimulate muscle protein breakdown via enhanced
expression of E3 ligases (Stefanetti et al., 2015), resulting in small
muscle fibers that facilitate oxygen diffusion to the mitochondria.
Growing evidence supports favorable adaptations (i.e., shift in
muscle fiber phenotype (from less efficient myosin heavy chain
IIX to more oxidative type myosins I and IIA), improvements
in motor unit recruitment and firing frequency, greater muscle
activation and intra- and inter-muscular coordination, greater
muscle–tendon unit stiffness and biomechanical efficiency,
changes in substrate utilization, metabolites accumulation, and
important signaling cascades related to PGC-1α) following sprint
interval training (Sloth et al., 2013), repeated-sprint training
(Bishop et al., 2011; Girard et al., 2011; Taylor et al., 2015)
or even resistance training (Blagrove et al., 2018) that are
more and more implemented among (elite) endurance athletes.
Note that training interventions require optimal periodisation,
taking into account time windows of adaptation and decay
of the underlying skeletal muscle determinants (Hickson and
Rosenkoetter, 1981). Considering periodisation, dose-response
relationships, and individual trainability, discovering what type
of training is themost effective remains an unsolved question that
nourish the endless debate among practitioners and researchers.

CONCLUSION

Determinants of endurance performance have previously
been established in the conceptual framework by Joyner

and Coyle (2008). However, less is known on how the
differences in endurance performance are explained by
skeletal muscle characteristics and whole-body determinants.
This review includes a meta-analysis that highlights the
interrelationships and corresponding effect sizes between
endurance performance, V̇O2max, lactate threshold and
efficiency/economy as well as skeletal muscle fiber type, fiber
size, capillarization, myoglobin, mitochondrial oxidative
capacity, and whole-muscle morphology. Integrative assessment
of these determinants is encouraged, stressing the importance of
capillarization and myoglobin, and training strategies to improve
the physiological determinants have been mentioned, taking
into account the different time windows of their adaptation and
decay. In summary, optimisation of endurance performance
requires careful design of training interventions that finetune
modulation of exercise intensity, frequency and duration,
and particularly periodisation with respect to the skeletal
muscle determinants.
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