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Pseudo‑Darwinian evolution 
of physical flows in complex 
networks
Geoffroy Berthelot1,2,3, Liubov Tupikina4,5, Min‑Yeong Kang6, Bernard Sapoval6 & 
Denis S. Grebenkov6*

The evolution of complex transport networks is investigated under three strategies of link removal: 
random, intentional attack and “Pseudo-Darwinian” strategy. At each evolution step and regarding 
the selected strategy, one removes either a randomly chosen link, or the link carrying the strongest 
flux, or the link with the weakest flux, respectively. We study how the network structure and the total 
flux between randomly chosen source and drain nodes evolve. We discover a universal power-law 
decrease of the total flux, followed by an abrupt transport collapse. The time of collapse is shown 
to be determined by the average number of links per node in the initial network, highlighting the 
importance of this network property for ensuring safe and robust transport against random failures, 
intentional attacks and maintenance cost optimizations.

Transport in complex systems can describe a variety of natural and human-engineered processes including 
biological1,2, societal and technological ones3,4. Common examples include blood vessel network and the lung 
airway tree5 that deliver blood and oxygen molecules, respectively; braided streams, consisting in a network of 
water channels, that occur in rivers and in glaciated landscapes when the discharge of water cannot transport 
its load or when sediment is deposited on the floor of the channel6,7; transportation networks for passengers8–10; 
social networks, in which the social and experience flow is progressively formed between individuals over time. 
These empirical networks are often scale-free and characterized by a degree distribution that follows a power law 
P(k) ∼ k−γ with an exponent γ often in a range between 2 and 3 or a truncated power law11,12. The morphological 
organization of transport in static scale-free networks was investigated from various perspectives13–16. It is known 
that transport through scale-free networks and their functionality in general are vulnerable to the intentional 
attack to a few vertices with high degree, but remain very robust to random failures17,18. While the percolation 
by deleting nodes has been extensively studied15,19,20, the effect of progressive link removal on transport in scale-
free networks is not well understood. In this paper we aim at investigating how the temporal evolution of local 
connectivities can lead to emergence of ordered structures in scale-free networks under different strategies of 
link removal. While we will focus on physical transport systems, where a flux is an electric current or the quantity 
of transferred materials or molecules over time, the obtained results are of much broader scope and reveal the 
fundamental principles of structural evolution of general transport networks.

Methods
We construct a random scale-free network on an n× n square lattice. Its links are generated by using the uncor-
related configuration model21 with a given degree exponent γ . We consider the resistance ri,j of each link as a 
function of the Euclidean distance di,j between the nodes i and j: ri,j = d

β
i,j , with an exponent β . In an electric or 

hydraulic circuit, the resistance of a wire or a tube is proportional to its length, and β = 1 . In turn, most former 
studies on transport in resistor networks supposed constant link resistance, i.e., β = 0 . In each random realiza-
tion of the resistor network with prescribed exponents γ and β , we select randomly a source and a drain nodes, at 
which the potential is fixed to be 1 and 0, respectively. We ensure the distance (in terms of the number of nodes) 
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between the source and drain is ≥ 4 . The system of linear Kirchhoff ’s equations22 for the potential on other nodes 
is solved numerically using a custom routine in Matlab. Then the distributions of nodes potentials and currents in 
links are obtained. Such a point-to-point transport was shown to be self-organized into two tree-like structures, 
one emerging from the source and the other converging to the drain16. These trees merge into a large cluster of 
the remaining nodes that is found to be quasi-equipotential and thus presents almost no resistance to transport.

We consider three dynamics of network evolution, in which links are progressively removed according to one 
of the following strategies: at each step, one removes (i) randomly chosen link, (ii) the link with the strongest 
flux, and (iii) the link with the weakest flux. These three evolution strategies are meant to model respectively (i) 
progressive failures in a system in random (unrelated) places (e.g., due to material aging); (ii) intentional attacks 
on the network by removing the most relevant links; and (iii) a kind of progressive optimization of the system 
by removing least used elements. While the first two evolution strategies have been earlier studied (but mainly 
for nodes removal)23, we are not aware of former works on the latter network evolution that we call “Pseudo-
Darwinian strategy” of network percolation. Such a strategy is often employed in nature, e.g., as the mechanism 
of capillary network remodeling during morphogenesis24.

At each evolution step, we first solve the system of Kirchhoff ’s equations to calculate fluxes in all links, and 
then we remove a link according to the selected strategy. After link removal, we also remove “dead-ends” (i.e., 
nodes that have a single link), thus imposing that any existing node after an evolutionary step has at least two 
links. We keep track of the total flux Q, i.e., the flux that enters into the network from the source node. As we 
investigate the evolution of the network after successive link removals, it is natural to associate the number of 
evolution steps with “time” t, with 0 being the initial time, before the evolution takes place. We denote Q0 , L0 and 
N0 = n2 as the total flux, the number of links, and the number of nodes of the initial network, respectively. The 
evolution ends when at least one of the following conditions is met: (i) no path exists between the source and 
the drain (i.e. the source and drain are disconnected), (ii) the source or the drain is removed from the network, 
(iii) a portion of the network—a subgraph containing more than one node—is disconnected from the rest of 
the network containing the source and drain. We call this moment as “time of collapse” tc : as one of the previous 
conditions is met, transport is no longer maintained through the whole network.

Results
We first explore a scale-free resistor network with N0 = 40× 40 nodes and parameters γ ∈ {2, 3, 4} and 
β ∈ {−1, 0, 1} . Figure 1 shows how the total flux Q, rescaled by its initial value Q0 , evolves with time t for dif-
ferent networks ( γ , β ) and strategies. Expectedly, the progressive removal of the strongest links leads to a very 
rapid transportation collapse, whereas this decline is the slowest for the pseudo-Darwinian strategy. To better 
understand the effect of this strategy, we also calculate the derivative of the total flux Q with respect to time 
(Fig. 2). Two regimes are observed: a slow, power law decay, followed by an abrupt decay. In the first regime, we 
find the universal scaling exponent 2 of the derivative of the total flux for all γ and β values, implying

(1)Q(t)/Q0 ≃ 1− C(t/tc)
3 (t ≪ tc),
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Figure 1.   Evolution of the total flux Q (rescaled by Q0 ) for a scale-free network with N0 = 40× 40 nodes for 
nine combinations of parameters γ and β : γ = {2, 3, 4} (left, middle and right columns) and β = {−1, 0, 1} (top, 
middle and bottom rows). In each plot, 60 curves correspond to 60 random realizations of the initial network.
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where C is a nonuniversal constant. The distribution of fluxes in links along the evolution process (Fig. 3) shows 
that the removal of the weakest link at each evolution step does not affect the distribution of large fluxes for the 
most period of evolution. For this period, the total flux remains almost the same. Figure 4 helps to understand 
this robustness: the removal occurs mostly in the links in the quasi-equipotential cluster where connections are 
abundant while the links with large currents are kept.

The time of collapse tc is related to the degree exponent γ in all strategies: networks with lower γ values pro-
duce higher tc (Fig. 1). This highlights the role of connectivity in resisting against random or targeted attacks. 
This effect is illustrated for the pseudo-Darwinian evolution by plotting the time of collapse rescaled by L0 , tc/L0 , 
versus the initial number of links L0 for various network sizes (Fig. 5(left)). Further rescaling the horizontal axis 
L0 by the initial number of nodes, N0 , results in a collapse of all curves into a single master curve that determines 
tc/L0 as a function of the initial average degree, L0/N0 , independently of the network structure ( γ , β ) and size 
N0 (Fig. 5(right)). Thus we conclude that higher average degree in an initial network helps in delaying the time 
tc of transport collapse.

Discussion
In our setup, the total flux describes a network functionality and its ability to transport or distribute a current. 
Thus, the sudden collapse observed in all three strategies means that the network eventually fails to transport. 
The onset of this collapse is affected by the evolution strategy, in particular, the pseudo-Darwinian strategy leads 
to a nearly “optimized” network, i.e. a structure that carries most of the flux with minimal number of useless 
links (i.e. links that carry a negligible part of the flux). This can also be seen as an “economical” structure, where 
the transport function is kept with the least size of components and, hence, minimized maintenance cost25. 
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Figure 2.   Time derivative of the total flux for a scale-free network with N0 = 40× 40 nodes and different 
values of γ and β for the pseudo-Darwinian strategy only. The slope is identical for all values of γ and β , 
suggesting a universal phenomenon. The derivative here is calculated as an average from 60 realizations.
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However, going to an optimal system makes it fragile and dangerous because a small disturbance can lead to a 
sudden collapse. Therefore, for robustness of the network, a safety margin from the critical point tc should be 
considered, as known for human bronchial systems5.

When reaching tc , the “optimized” structure becomes a chain connecting pre-selected source and drain 
nodes. While this structure is formally optimal, it is impractical for applications due to its “optimality” for the 
particular choice of the source and the drain. A much more challenging and practically relevant question would 
be the construction of the optimal structure for all (or for most) pairs of source and drain nodes. This problem 
will be investigated in a subsequent work.

This paper focused on the evolution of both transport and structural properties of scale-free networks 
under progressive link removal. Such transport-driven dynamics further extend common models of network 
evolutions26–28. In particular, our analysis helps to investigate the precursors of the transitions for links percola-
tion applied to resistor networks29 or epidemic spreading30. More generally, this study can serve as a basis for 
illustrating generic evolution dynamics of complex networks governed by its transport properties. Different works 
already made the analogy between Kirchhoff ’s laws and the conservation of mass equation, with applications 
to vehicular flow31, fractures in materials32, neuronal circuitry in the brain33. For instance, a direct analogy with 
random walks on graphs opens exciting perspectives for understanding diffusive transport and first-passage 
processes on evolving networks34,35. Our approach is also expected to stimulate further studies of link-based 
percolation in other networks such as in protein networks, where links can be lost with time (corresponding to 
the loss of some proteins’ functionalities), while proteins, the nodes of a network, remain present36.

Figure 4.   Visualization of evolution of a scale-free network (with N0 = 30× 30 nodes, γ = 2.5 and β = 1 ; 
A video is available online). Each node of the network is shown by a ball whose radius is proportional to the 
square root of its connectivity. The planar coordinates of the balls are the positions of the corresponding nodes 
on the square lattice, whereas the height Z represents the potential at the node by a linear relation Z = V  . 
Each link brightness is proportional to the magnitude of its current (in addition, blue colors are used for very 
small currents). The quasi-equipotential cluster is qualitatively identified as a large ensemble of nodes almost 
at the same potential. Four panels represent the network at four moments, t/tc , during evolution (clock-wise 
direction): 0 (initial state), 0.83, 0.97, and 0.98. Along the evolution process, the weakest links are removed 
successively. Note that links in the cluster are removed during the majority of evolution period.
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