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Abstract 

The objective of this study was to investigate the effects of wearing compression socks (CS) 
on performance indicators and physiological responses during prolonged trail running. Eleven 
trained runners completed a 15.6 km trail run at a competition intensity whilst wearing or not 
wearing CS. Counter movement jump, maximal voluntary contraction and the oxygenation 
profile of vastus lateralis muscle using near-infrared spectroscopy (NIRS) method were 
measured before and following exercise. Run time, heart rate (HR), blood lactate 
concentration and ratings of perceived exertion were evaluated during the CS and non-CS 
sessions. No significant difference in any dependent variables was observed during the run 
sessions. Run times were 5681.1±503.5 and 5696.7±530.7 s for the non-CS and CS 
conditions, respectively. The relative intensity during CS and non-CS runs corresponded to a 
range of 90.5–91.5% HRmax. Although NIRS measurements such as muscle oxygen uptake 
and muscle blood flow significantly increased following exercise (+57.7% and + 
42.6%,+59.2% and + 32.4%, respectively for the CS and non-CS sessions, P<0.05), there was 
no difference between the run conditions. The findings suggest that competitive runners do 
not gain any practical or physiological benefits from wearing CS during prolonged off-road 
running. 

Keywords: Compression socks, trail running, performance indicators, muscle oxygenation, 
physiological responses 

 

 

 



Introduction 

During the two last decades, road runners have been wearing compression garments (CGs) 
during race particularly with the use of compression socks (CS) in an attempt to enhance their 
performance (e.g. Paula Radcliffe, Lornah Kiplagat). Since the intensive development of 
technological clothing in the area of endurance sports, the wearing of CS has been widely 
used by on and off-road runners for training and racing. Based on anecdotal reports, runners 
often comment on their leg's feeling with a lower perception of strain in the calf when 
exercising with CS. These statements are in line with a previous study indicating that knee-
length CGs are more comfortable with less possibilities of wrinkling when compared to thigh-
length CGs (Benkö, Cooke, McNally, & Mollan, 2001). Paradoxically, a lack of clear 
evidence of CS benefits was reported for performance, indicators of muscle power (e.g. 
countermovement jump) or metabolic adaptations in trained runners (Ali, Creasy, & Edge, 
2011; Goh, Laursen, Dascombe, & Nosaka, 2011; Ménétrier, Mourot, Bouhaddi, Regnard, & 
Tordi, 2011; Sperlich et al., 2010, 2011; Varela-Sanz, Espana, Carr, Boullosa, & Esteve-
Lanao, 2011). However, little is known about the analysis of selected physiological variables 
(e.g. muscle oxygenation) and performance responses (e.g. maximal voluntary contraction 
[MVC]) following a prolonged running exercise (>1-h) close to the race intensity. 
Interestingly, using near-infrared spectroscopy (NIRS) method, Dascombe, Hoare, Sear, 
Reaburn, and Scanlan (2011) have demonstrated that wearing CGs positively influenced a 
number of peripheral circulatory measures within the vastus lateralis (VL) during a time to 
exhaustion conducted at a competition pace in runners. However, these peripheral 
physiological benefits were not correlated to a significant improvement in running 
performance. Similarly, Varela-Sanz et al. (2011) have recently reported a non-significant 
increase of approximately 13% in time limit running test under CS condition, at a competitive 
velocity. Although the small number of subjects (n=6) might partly explain the lack of 
significant differences between CS and non-CS conditions, these investigators showed a 
cardiac benefit in runners wearing CS, resulting in a significant decrease in relative intensity 
(i.e. maximal heart rate) sustained during the time limit. 

Even if physiological benefits from the wearing of CGs were identified during endurance 
running performance, it is likely that the exercise duration reported in these recent running 
studies was not sufficient to highlight any possible benefits of wearing CS on performance 
responses. Other methodological limitations may be considered in the previous investigations, 
including not only the use of a treadmill that can potentially change the normal running 
kinematics and the subsequent energetic requirements of high-intensity endurance running 
(Wank, Frick, & Schmidtbleicher, 1998), but also the use of a running time to exhaustion as 
performance indicator, which may modify pacing strategies related to race performance. 
Finally, no running analysis has been conducted on the relationship between any form of CGs 
and performance responses throughout off-road exercises, so-called trail-running, including 
uphill and downhill sections. In contrast with flat road, the muscular contractions induced 
during trail-running are specific and dictated by the occurrence of a strong concentric 
modality during uphill section and a dominant eccentric regimen to downhill section. This 



running exercise might result in higher muscle oscillations and variations in physiological 
responses, particularly during the repeated downhill sections (Millet et al., 2011). 

In contrast with most of laboratory settings, the evaluation of selected metabolic and/or 
muscular variables remains specific in the outdoor context and requires a serie of 
measurements conducted before and following exercises (e.g. Easthope et al., 2010; Millet et 
al., 2011; Sultana et al., 2012). Therefore, the objective of the current study was to examine 
the effect of a new non-graduated CS (18 mmHg) on physiological responses and 
performance indicators following prolonged trail running in experienced off-road runners. 
Considering the findings reported in the CGs running investigations and also, the specificity 
of our running task, it may be hypothesised that the physiological benefits of wearing CS (e.g. 
improved muscle oxygenation, decreased HR response) appear more accentuated during trail 
running (~1.5 h) at a competition pace, improving thus performance indicators and 
physiological responses following prolonged exercise. 

Methods 

Subjects 

Eleven male trained runners [(mean±SD) age: 34.7±9.8 years; height: 178.4±7.0 cm; body 
mass: 72.3±6.8 kg] participated to this study after medical examination. All subjects had a 
minimum of three consistent years of trail running experience over different race distances 
(from 20 to 80 km). Run training time ranged from 8 to 12 h wk−1, interspersed with 
competitive events. All subjects gave their informed written consent to participate in the 
current study, which has been conducted according to the Declaration of Helsinki. A local 
ethics committee for the protection of individuals gave approval concerning the project before 
its initiation. 

Experimental design 

An overview of the experiment is given in Figure 1. All subjects completed both laboratory 
and field sessions. At the initial laboratory session, participants performed an incremental 
exercise test to exhaustion on a motorised treadmill. Pulmonary gas exchanges were collected 
breath-by-breath and averaged for every 10 s period using a metabolic measurement system 
(Oxycon Alpha®, Jaeger). The system was calibrated prior to each exercise test according to 
the manufacturer's instructions. After 6 min of warm-up exercise at 10 km h−1, the treadmill 
speed was increased by 1 km h−1 every 2 min (with a 4% grade). This maximal session did 
allow to determine mean values in maximal oxygen uptake (VO2max), maximal ventilation 
(VEmax) and maximal heart rate (HRmax). During laboratory and field testing sessions, HR 
values were monitored using a polar unit (RS800CX, Polar®, Kempele, Finland). During the 
first visit, particular attention was paid to familiarise participants with the experimental 
procedures, especially the completion of MVC and counter movement jump (CMJ) to 
quantify indicators of muscle power. 

Subsequently, to familiarise the participants with the experimental off-road sessions, two 
practice runs were completed on the course. The second run was entirely conducted at a pace 



closer to the race context. The subjects were habitual users of CS during training and racing, 
avoiding potential discomfort in the calf area. Likewise, red markers were placed on the 
ground every 200 m to facilitate the displacement of our runners during the course. These 
runs were performed between two and four weeks before the experimental runs. After a 
standard and controlled warm-up of 10 min, the off-road sessions consisted of completing two 
maximal (race effort) 15.6 km trail runs, in a random order, on two separate days one week 
apart, wearing CS or not wearing CS (non-CS). Runners were asked to wear the same shoes 
and the similar clothing (without thigh compression) for CS and non-CS conditions. For the 
CS session, subjects wore socks extending from below the knee to the lateral malleolus 
(constant pressure of 18 mmHg applied to the calf/94% Polyamide and 6% Lycra). During the 
first run, subjects consumed carbohydrate (CHO) in the form of gel (25 g, two per runner) and 
energy drinks (6% CHO/600 ml of water per runner). Fluid intake was measured by weighing 
the bottle after the first run on an electronic scale (accurate to 1 g). Subsequently, the quantity 
of ingested CHO gels and fluid intake was individually replicated during the second run. 
Finally, the runners were separated to avoid pacing strategies or psychological impact 
affecting run time. Likewise, the day before each trial, the runners were asked to refrain from 
strenuous exercise and they were also asked to keep the same nutritional routine before each 
trial, with the same breakfast at the same time, similar to what they would do before a race. 

More precisely, the 15.6 km trail-running consisted of the completion of three 5.2 km loops 
with a brief rest period of 40 s fixed between the loops for data collection (Figure 1). Each 
loop was divided into two sections completed systematically in the following order: uphill 
(2200 m) and downhill section (3000 m) with average gradients of 13% and 9%, respectively. 
The positive elevation was 275 m for each loop. The profile of trail-running was characterised 
by the completion of 100% single tracks in the mountain and repeated technical portions with 
rocky/root filled paths. Weather conditions were stable with ambient temperatures ranging 
from 20 to 24°C (South of France) during the sessions. 

Measurements during CS and non-CS sessions 

During the 40 s rest periods fixed between the loops of CS and non-CS sessions (Figure 1), 
the ratings of perceived exertion (RPE) scale using the Borg 6–20 was presented to the 
subjects who was asked to say the number that reflected the perceived exertion for (1) an 
‘overall’ or total body rating (RPEglobal), (2) a central or ‘heart/lungs’ rating (RPEcentral) 
and (3) a peripheral or ‘legs’ rating (RPEperipheral; Borg, 1998). Moreover, the blood lactate 
concentration [Bla−] was obtained using a Lactate Pro® analyser (Akray, Kyoto, Japan) from 
5 µL samples of blood taken from the earlobe during the rest periods of CS and non-CS runs. 
Athletes were also equipped with a RS800CX G3 (Polar®, Kempele, Finland) including a 
GPS receiver fixed on the arm for monitoring HR and displacement values. 

Measurements before and following CS and non-CS sessions 

Near-infrared spectroscopy measurements 

Oxygenation profile of the right VL muscle was recorded using a continuous-wave NIRS 
system (PortaMon®; Artinis Medical Systems BV, Zetten, the Netherlands). This analysis 



was conducted prior to the warm-up of run sessions and following CS and non-CS bouts (~5 
min) to monitor concentration changes in oxyhemoglobin (HbO2), deoxyhemoglobin (HHb) 
and total hemoglobin (tHb). A probe was attached to the middle part of the VL muscle (15–20 
cm above the centre of patella) longitudinally. Pulsed light was emitted from the emission of a 
three-segment photodiode at two different wavelengths (760 and 850 nm) and was detected, 
as a function of distance, using a photodiode detection probe that received NIRS signals at 2 
Hz. To prevent variations in placement of the NIRS emitter-detector, the angle and location of 
the probe were held constant using Velcro straps. Similarly, the position of the NIRS probe 
was noted with a marker to ensure identical placement on each subject for all testing sessions. 
Finally, a light-impermeable cloth covered the probe to reduce room light interaction with the 
near-infrared signal. Before placement on the VL, the site was shaved and cleaned using 
alcohol swab. Subjects lay supine in a horizontal position with slightly inclined upper body 
(15°) keeping their arms at their sides for the duration of the test. In order to determine 
muscular oxygen uptake (mVO2) and blood flow (mBF), two venous occlusions were applied 
above the belly of the VL (compression of femoral artery), using air inflated to 70 mmHg, 
each lasting 20 s with a 2 min recovery interval (Ahmadi, Sinclair, & Davis, 2008a; Ahmadi, 
Sinclair, Foroughi, & Davis, 2008b). The medium time-derivative of HHb, HbO2 and tHb 
was determined over a time period of 20 s beginning once the pressure of 70 mmHg was 
reached. Given that the venous outflow was blocked, the initial linear increase in HHb was 
used to calculate mVO2  (in ml O2 min−1 100 g) (Van Beekvelt, Colier, Wevers, & Van 
Engelen, 2001). Moreover, mBF was measured during venous occlusion by evaluating the 
linear increase in tHb during the time period of 20 s. Given that the venous outflow was 
blocked, the increase in tHb (HbO2+HHb) was directly related to the arterial inflow (in ml O2 
min−1 100 g) (Van Beekvelt et al., 2001). During the pre/post-bouts, mVO2  and mBF were 
calculated as the average obtained from the two venous occlusions. 

Maximal voluntary contraction 

Instantaneous isometric torque at the knee joint was recorded using a Biodex® isokinetic 
dynamometer (Shirley, NY). Subjects were placed in a seated position and were securely 
strapped into the test chair. Extraneous movement of the upper body was limited by two 
crossover shoulder harnesses and a belt across the abdomen. All measurements were taken 
before (after a standard warm-up) and 45 min after the CS and non-CS run sessions from the 
subject's right leg, with the knee and hip flexed at 90° from full extension. Subjects were then 
asked to perform three trials of MVC (4–5 s) with a rest period of 60 s between each MVC. 
The highest MVC value of trials was used. 

Countermovement jump 

Participants were instructed to adopt a standing position with hands on hips. This position was 
held for 3 s before the completion of a maximal vertical jump. Volunteers were instructed to 
keep their hands on their hips throughout the jump, and their legs straight whilst in the air. 
Participants stood fully erect, and following a verbal command, initiated a countermovement 
followed by a maximal vertical jump in one continuous motion. Before and immediately after 
the run sessions (~1 min), CMJ heights (in cm) were recorded from the Bosco test that 



consists of measuring the flight time with a digital timer (±0.001 s; Bosco, Luhtanen, & 
Komi, 1983). The highest CMJ value of three jumps was used. 

Statistical analysis 

Data are presented as mean±SD. The Kolmogorov–Smirnov test was applied to ensure a 
Gaussian distribution of the data. The performance and physiological responses throughout 
CS and non-CS runs between the pre- and post-periods of each condition were compared by 
using paired t-tests. For this analysis, the NIRS data expressed as the delta between the 
pre/post-periods (%) were evaluated by an arcsine transformation. Furthermore, a 2 
(condition)×3 (time) repeated-measures analysis of variance was used to examine the effects 
of trail-running sessions on dependent variables within the three loops of exercise. A Tukey 
post hoc test was used to determine significant differences among CS and non-CS conditions. 
Statistical significance was accepted at P < 0.05. 

Results 

For the incremental run exercise, mean values in VO2max , HRmax, VEmax were 4.32±0.43 L 
min−1 (60.1±6.5 ml kg−1 min−1), 183±10 beats min−1 and 142.4±20.5 L min−1, 
respectively. The analysis of the three loops indicated no significant change in run times 
(~2.5%, Figure 2) between the non-CS and CS conditions. The average finishing time of our 
subjects was 5681.1±503.5 and 5696.7±530.7 s for the non-CS and CS runs, respectively. The 
evaluation of isolated run indicated that the mean values in run time for the loop #1 were 
significantly lower as compared to those reported for the loops #2 (−6.10% only for the CS 
run, P < 0.05, Figure 2) and #3 (−9.95% and −8.60%, respectively, for the non-CS and CS 
runs, P < 0.05, Figure 2). No significant variation in [Bla−] and HR values was observed 
throughout the loops and between the run sessions (Table I). Moreover, mean values in 
RPEgloblal, RPEcentral and RPEperipheral were significantly higher during the loop#3 
compared to those reported during the loop#1 (P < 0.05), without any significant differences 
between the CS and the non-CS runs. The analysis of the pre/post-measurements indicated 
significant higher values in mVO2 and mBF during the post-run, characterised by significant 
values in ∆mVO2 and ΔmBF (Figure 3, P < 0.05) for the two trail-running sessions. No 
significant variations in MVC and CMJ were observed following run sessions (212±45 vs. 
214±55 Nm, 35±6 vs. 32±5 cm, respectively, for the non-CS and CS conditions). 

Discussion 

The originality of our experimental setting was based on a holistic analysis focusing on the 
use of CS within actual off-road running conditions in trained trail runners (VO2max>60 ml 
O2 min−1 kg−1). In contrast with our experimental hypothesis, the main finding of this work 
was that wearing CS did not have an effect on physiological variables and performance 
indicators measured during and following prolonged exercise. 

The use of CS is increasingly widespread in the domain of trail running (>50% of engaged 
racers on average, unpublished data), independent of performance level or race distances. 
However, the practical interest of wearing CS in the running activity under actual racing 



conditions has received little supporting scientific evidence. Most of identified investigations 
focusing on the use of CGs during running performance have selected either outdoor flat 
exercises (not exceeding 10 km or 45 min) or time to exhaustion exercises as performance 
indicator (Ali et al., 2011; Dascombe et al., 2011; Goh et al., 2011; Ménétrier et al., 2011; 
Sperlich et al., 2010; Varela-Sanz et al., 2011). The present investigation is the first to report 
performance data in relation with the wearing of CGs following prolonged running (>1-h). 
However, our findings indicate a lack of significant differences in run times between the CS 
and non-CS session. Interestingly, our athletes adopted a positive pacing strategy (e.g. Stearns 
et al., 2009) during which the average speed gradually decreases over the duration of CS and 
non-CS runs (Figure 2), suggesting that the use of CS has no effect on external factors 
potentially involved in the pacing strategy. All participants reported a similar effort for each 
loop of CS and non-CS runs, characterised by a lack of RPE variations between conditions 
(Table I). The perceptual scales provide a reflection of subjective intensity and, coupled with 
the physiological measures such as HR, the relevant information is that our runners have 
performed trail running exercises (across the loops) at the same and high intensity (i.e.>90% 
HRmax). Our results are consistent with recent studies that showed a lack of change in 
running performance with the use of CS (Ali et al., 2011; Dascombe et al., 2011; Goh et al., 
2011; Ménétrier et al., 2011; Sperlich et al., 2010; Varela-Sanz et al., 2011), suggesting that 
wearing CS (graduated or non-graduated) has no ergogenic effect during various running 
tasks. Thus, future research is required to analyse the effects of wearing CGs during off-road 
running exceeding two hours of exercise, especially when fatigue process, muscular damage 
or muscle oscillations are particularly accentuated (Millet, Martin, Lattier, & Ballay, 2003; 
Millet et al., 2011). 

During endurance cycling and running exercises, the oxygenation profile has often been 
investigated from in situ measurements based on the variations in tissue oxygenation index, 
HHb or HbO2 (Dascombe et al., 2011; Scanlan, Dascombe, Reaburn, & Osborne, 2008). 
These investigations have demonstrated that wearing CGs improved muscle oxygenation 
without any significant variation in performance response. Alternatively, other NIRS 
parameters such as mVO2 and mBF may be used to quantify the muscle oxygenation 
responses following exercises (Ahmadi et al., 2008a, 2008b). Based on the principle of 
venous occlusion, these authors have monitored muscle oxygenation using mVO2 and mBF 
parameters before and following eccentric exercise-induced muscle damage. Considering this 
recent method, the present study is the first to report on the variations in mVO2 and mBF 
before and following prolonged endurance exercise. The choice of measurement periods 
(pre/post) was essentially linked to the complexity of analysing physiological parameters 
during trail running. 

In contrast to earlier studies (Dascombe et al. 2011; Ménétrier et al., 2011; Scanlan et al., 
2008), no significant variation in NIRS parameters was identified between CS and non-CS 
runs (Figure 3). The absence of change in oxygenation profile between run sessions might 
have been influenced by the position of the NIRS probe on the VL whereas the compression 
level was applied to the calf. This suggests that (1) wearing CS during exercise has no effect 
on measured systemic mBF (i.e. effect of CS on mBF in the VL) following exercise and that 



(2) the potential benefits of CS on circulatory responses may be expected locally on the 
compressed muscle region and thus, depend on the amplitude of the myogenic response 
generated by external compression (Bochmann et al., 2005). Furthermore, mBF and mVO2 
reported in the present work were significantly higher following both CS and non-CS runs 
when compared to the resting values. The immediate increments in after run sessions might 
result simply in the increased mBF to the exercise limbs. In fact, during exercise, the vascular 
portion of actives muscles is considerably increased by the dilatation of local arterioles. This 
hyperaemic reaction could be observed after all types of exercise and thus, an increase in 
mBF and mVO2 would be an expected finding following any type of exercise (Ahmadi et al., 
2008a, 2008b). Alternatively, it has been acknowledged that HR may be used as an indirect 
measure of venous return and/or circulatory flow, according to the Frank–Starling mechanism 
(Ali, Caine, & Snow, 2007; Varela-Sanz et al., 2011). In this regard, the lack of change in HR 
values across the three loops of CS and non-CS runs suggests that wearing CS does not 
influence venous return (and oxygenation profile) during exercise and strengthens our finding 
concerning the NIRS responses obtained immediately after running. 

Moreover, the non-significant modification in [Bla−] values among the three loops of CS and 
non-CS runs (Table I) does not support the claim purported by many CS manufacturers about 
the improved removal of blood lactate during exercise. The present study also demonstrates 
that wearing CS during off-road running exercise does not alter selected indicators of muscle 
power such as CMJ and MVC. For instance, mean CMJ values were well maintained in the 
CS and non-CS post-runs and may have been due to the ‘warm-up’ effect. This is in 
agreement with previous running studies indicating no changes in CMJ values between CS 
and non-CS conditions (Ali et al., 2007, 2011; Jakeman, Byrne, & Eston, 2010). Similarly, 
muscle power characterised by MVC results indicated no significant strength loss when 
analysing the pre- and post-periods of CS and non-CS runs. Muscle fatigue is often defined as 
a reduction in the maximum force (i.e. MVC) that a muscle can exert (Millet et al., 2003). 
Considering this statement, we suggest that despite the specificity of trail running, the 
exercise duration may be not long enough to induce muscle fatigue in our trained runners. 
Recently, Ross, Goodall, Stevens, and Harris (2010) have shown the occurrence of knee 
extensor MVC decrement only during the final 5 km of a high-intensity 20 km self-paced run, 
corresponding approximately to the finishing times (~90 min) observed in our study. 
However, these authors have reported that the MVC was not significantly different from pre-
exercise values after 20 or 40 min of rest following running exercise. Based on this issue, the 
lack of strength loss in our study may also be attributed to the time at which the MVC was 
evaluated (45 min after the end of exercise). 

In conclusion, this is the first investigation that examines the effects of wearing non-graduated 
CS on performance indicators and selected physiological variables following a prolonged trail 
running exercise. However, it was demonstrated that competitive runners did not gain any 
physiological benefits and ergogenic aid from wearing CS during off-road running conducted 
at a race intensity. Although our results confirm a number of scientific data related to the 
absence of ergogenic aid under any form of wearing CGs during short running distances (<90 
min), a further topic would be relevant to analyse the impact that different level of exercise 



duration (>2-h), possibly inducing specific muscle fatigue and associated damage, may have 
on running performance and physiological responses. 
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Figures and Table 

Figure 1.  General view of the experimental sessions and run profile. 

 

 

Figure 2.  Variations in performance time within the three loops of CS and non-CS runs. *indicates a 
significant difference to loop 1 (P<0.05) for the CS and non-CS runs (P < 0.05). 

 



 

Figure 3.  Variations in muscle oxygenation profile following the CS and non-CS runs. *indicates a 
significant difference in mBF and between the pre- and post-period for the CS and non-CS runs (P < 
0.05). 

 

 

Table I. Variations in HR, [Bla−], RPEperipheral, RPEcentral and RPEgloblal values within the three loops of 
CS and non-CS runs. *indicates a significant difference with the loop # 1 for the CS and non-CS runs 
(P<0.05). 

 Loop 1 Loop 2 Loop 3 

 CS Non-CS CS Non-CS CS Non-CS 

HR (beats 
mitr−1) 

166±11 167±9 168±12 166±19 169±12 165±121 

Blood lactate 
[Bla−] 

4.19±1.39 3.75±1.90 5.47±2.65 4.72±2.24 4.70±1.66 5.07±1.71 

RPE peripheral 12.7±2.2 13.1±2.3 14.2±1.8 14.8±2.0 15.8±2.5* 16.1±2.4* 

RPE central 13.2±1.9 13.2±2.5 15.3±1.6 14.8±2.0 16.1±2.3* 17.0±1.8* 

RPE global 13.9±1.7 13.6±1.6 15.6±1.9 15.5±1.4 17.1±2.5* 17.5±1.6* 
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