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It is well-established that different altitude training modalities can improve convective oxygen (O2)
transport capacity and physical fitness of athletes (Millet et al., 2010). Exercising in hypoxia also
induces specificmuscular adaptations including increased oxidative enzymes (e.g., citrate synthase)
activity, mitochondrial density, capillary-to-fiber ratio, and fiber cross-sectional area (Hoppeler
et al., 2008). These changes with hypoxic training are mostly modulated via hypoxia-inducible
factor 1α (HIF-1α) signaling cascade, which is not activated to the same extent when training is
performed in normoxia or by passive hypoxic exposure. Indeed, large body of literature shows
that, compared to hypoxic exercise, passive exposure to hypoxia does not provoke similar acute
responses. In healthy individuals, both systemic (e.g., performance enhancement), cardiovascular
(e.g., maximal O2 uptake, VO2max) or transcriptional muscular responses are minimal with
intermittent passive exposures at moderate altitude. On the other hand, there are clear evidences
that when hypoxia is combined with exercise, it triggers specific responses, not observed following
similar exercise in normoxia (Bartsch et al., 2008; Lundby et al., 2009). In addition, greater specific
adaptations have been reported in high-intensity vs. moderate-intensity hypoxic intervention
(Faiss et al., 2013) (e.g., improvements in muscle O2 homeostasis and tissue perfusion induced by
enhanced mitochondrial efficiency, control of mitochondrial respiration, angiogenesis, and muscle
buffering capacity). It seems that the main underlying mechanism is the larger hypoxemia resulting
from the combination of muscle deoxygenation (high-intensity exercise) and systemic desaturation
(moderate hypoxia).

In patients or elderly individuals, altitude is generally associated with increased health risks
through enhanced sympathetic vasoconstrictor activation (Blitzer et al., 1996), obstructive sleep
apneas (Nespoulet et al., 2012), hypoxemia (Levine et al., 1997), pulmonary hypertension (Valencia-
Flores et al., 2004), arrhythmias (Kujanik et al., 2000), and alterations of postural control (Degache
et al., 2012). However, several studies have investigated the therapeutic benefits of exercising in
mild hypoxia on the blood pressure regulation and the influence of different hypoxic modalities in
healthy individuals (Bailey et al., 2001; Wang et al., 2007; Haufe et al., 2008; Nishiwaki et al., 2011;
Morishima et al., 2014; Shi et al., 2014) or in patients with different cardiovascular and respiratory
risk factors such as chronic obstructive pulmonary disease (COPD) (Haider et al., 2009), obesity
(Wiesner et al., 2010), coronary artery disease (Burtscher et al., 2004). Recent studies (Haufe et al.,
2008; Wiesner et al., 2010) have also reported that sustained hypoxia may be of benefit to weight
management programs of obese patients (Urdampilleta et al., 2012; Kayser and Verges, 2013). Both
exercise (Williams et al., 2002) and/or intermittent hypoxia (Burtscher et al., 2004; Shatilo et al.,
2008) have been suggested to positively influence age-related alterations in elderly individuals.
Finally, living at altitude seems to have contradictory effects on different mortality risk factors.

Therefore, this essay summarizes recent evidences suggesting that exercising in hypoxia might
be a valuable and viable “therapeutic strategy.” We discuss the benefits and risks/limitations
in (i) hypertensive (ii) obese, (iii) elderly individuals. Since the benefits of being active
have been extensively investigated in these three groups of individuals (see respective
reviews on the effects of physical activity in Cherubini et al., 1998; Baillot et al., 2014;
Borjesson et al., 2016), the present article focus on the potential additional health benefits
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provided by hypoxic exercise, when compared to normoxic
exercise. For safety and practical reasons, patients cannot access
high altitude (even by using hypoxic devices) and preferably stay
at moderate altitude (1800–3000m). In this setting, exercise is
used to increase the overall hypoxia-inducedmetabolic stress and
thereby provide benefits beyond those achievable by normoxic
therapeutic training modalities.

HYPERTENSION

Systemic hypoxia (i.e., reduction in the O2 arterial content) at
rest elicits acute vasodilation in conduit arteries [reduction in
arterial stiffness (Vedam et al., 2009)] and augments blood flow
within the skeletal muscle vascular beds, which occurs despite an
enhanced sympathetic vasoconstrictor activity. There are direct
evidences that during hypoxic exposure endothelium-derived
nitric oxide (NO)-mediated mechanisms are largely involved
in the vasodilatation of muscular arteries (but not the aorta;
Vedam et al., 2009). Leuenberger et al. (2008) further showed
that hypobaric hypoxia is associated with increased NO in venous
effluent from skeletal muscle but not in the skeletal muscle
interstitium.

Systemic hypoxia per se leads to peripheral vasodilation that
aims to counteract the decrease in O2 content and subsequent
peripheral O2 delivery. In former Soviet Union countries,
intermittent hypoxic exposure at rest (Bernardi et al., 2001) was
applied therapeutically to lower blood pressure in hypertensive
patients with numerous positive reports (Serebrovskaya et al.,
2008). Skeletal muscle vasodilation associated with hypoxia is
due to release of vasodilator substances of which the NO/NO
synthase pathway seems to play a central role. However, there
is a synergistic effect of hypoxic and exercise stressors on the
magnitude of this response. When physical exercise is added
to the hypoxic exposure, blood flow increases to contracting
muscles that compensate for the reduced arterial O2 content
and keeps O2 delivery to the active muscle relatively constant;
a phenomenon called “compensatory vasodilatation” (Casey and
Joyner, 2011). Although, a number of other vasoactive substances
are also produced by the endothelium in an O2-sensitive
manner [i.e., adenosine (Leuenberger et al., 1999); prostaglandins
(Messina et al., 1992)], NO appears to be the major contributor
to the compensatory vasodilator responses. Hypoxia and physical
exercise are independent and highly potent metabolic stressors
(Bailey et al., 2001). Acute hypoxic exposure reduces arterial
O2 saturation level, whereas physical exercise increases VO2max

by working muscles (Wang et al., 2010). Hence, hypoxic
exercise considerably reduces the O2 partial pressure within
the mitochondria of the working organs by simultaneously
decreasing O2 supply and increasing O2 demand (Wang et al.,
2010). Owing to hypoxia-induced augmentation of exercise
hypoxemia, the reduction of blood pressure by “compensatory
vasodilatation” mechanisms may be larger than that by exercise
alone. In particular, compared to similar training at sea level,
moderate-intensity hypoxic training was shown to be superior
for improving aerobic capacity and increasing the production
of various circulating progenitor cells subsets and angiogenic
factors, associated with enhanced hemodynamic responses to

exercise in sedentary individuals (i.e., vasodilation in coronary
and resistance vessels by increased NO production, vascular
endothelial growth factor (VEGF) production;Wang et al., 2007).
Similarly, exercise training under mild intermittent hypoxic
conditions (2000m simulated altitude) seems to be more efficient
in reducing arterial stiffness and inducing vascular functional
adaptation in the form of an increased flow mediated dilation
(FMD) response amplitude compared to similar normoxic
training (Nishiwaki et al., 2011). Taken together the above
evidences suggest that adding hypoxic stimuli to exercise induces
greater reductions in blood pressure, compared to normoxic
training and enhances various aspects of the vascular function,
which are pertinent for the reduction of cardiovascular risks.

OBESITY

Obesity is characterized by an increased mass of adipose
tissue (excessive fat accumulation) resulting from a systemic
imbalance between food intake and energy expenditure (i.e.,
positive energy balance). Beside obesity-related disorders, the
visceral adiposity impairs endothelial function and increases
the vascular media thickness and arterial stiffness (Weil et al.,
2011). Obese individuals often present chronic inflammation of
the adipose tissue, which is considered to play an important
role in the initiation and development of obesity-related
comorbidities, and increases of the oxidative stress within the
fat tissue. Hypoxia seems to be involved in the inflammation-
related within the poorly oxygenated adipose tissue (e.g.,
secretion of several adipokines affecting endothelial function and
promoting a systemic inflammatory state). Thus, systemic and
local inflammation associated with oxidative stress, adipokine
dysregulation and increased sympathetic nervous actions is
implicated in endothelial dysfunction in obesity.

Pioneering studies (Haufe et al., 2008; Wiesner et al., 2010)
have reported that, despite lower training workload and therefore
lowermechanical strain in hypoxia, this environmental condition
may lead to significant weight loss and improve metabolic and
cardiorespiratory health, leading to suggestions that sustained
hypoxia may be of benefit to weight management programs of
obese patients (Urdampilleta et al., 2012; Kayser and Verges,
2013). This phenomenon is also known as “altitude anorexia”
and is underlined by decreased food intake and hypoxia-
induced appetite reduction, as a consequence of increases in
the appetite reducing and satiety signaling peptides leptin or
cholecystokinin, concomitant with a reduction in the hunger-
stimulating hormone ghrelin (Yingzhong et al., 2006). In
addition, hypoxia exposure also seems to result in increased
energy expenditure (Kayser and Verges, 2013). In line with the
above, higher altitude of residence was recently shown to be
associated to lower obesity rates (Voss et al., 2014).

AGING

Aging is associated with a progressive increase in systolic
blood pressure and development of arterial hypertension (via
atherosclerotic changes, stiffening of arteries, altered renal
function, and arterial baroreflex impairment), leading to
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increased risk for cardiovascular or coronary heart diseases (Levy
et al., 1996). Moreover, sarcopenia (muscle loss) is accompanying
aging (Janssen et al., 2002), mainly due to a decrease in fast-twitch
fiber cross-sectional area (Verdijk et al., 2007). This phenomenon
may be masked by fat mass accumulation (Gallagher et al., 2000),
which also reduces vascularization and angiogenic capacity
and increases the risk of cardio-metabolic disorders. Overall,
these degenerative-dystrophic alterations predispose tissue to
local hypoxia (Lenaz et al., 2002; Sharma and Goodwin, 2006).
However, altitude residence’ effect appears controversial. For
instance, it may detrimentally affect certain lung conditions such
as chronic COPD (Cote et al., 1993) or pneumonia (Perez-
Padilla and Franco-Marina, 2004). On the other hand, certain
cardiovascular risks seem to be reduced with living in altitude.
In particular lower ischemic heart disease risk (Faeh et al., 2009,
2016) and reduction in mortality from coronary heart disease
(Mortimer et al., 1977) or dialysis (Winkelmayer et al., 2009;
Shapiro et al., 2014) have been reported in high altitude patients.
Improved myocardial angiogenesis or ventricular remodeling
have been proposed as the main underlying mechanisms (Sasaki
et al., 2002).

While caution may be requested regarding the utilization of
hypoxic training with elderly individuals, passive intermittent
hypoxic exposure was shown to increase exercise tolerance
and VO2max (Burtscher et al., 2004). Furthermore, healthy
elderly individuals well-tolerated intermittent hypoxic training,
with greater effect on haemodynamic, microvascular endothelial
function, and work capacity in untrained participants (Shatilo
et al., 2008). Recently, resistance training under systemic hypoxia

was shown to result in greater muscle size and strength and
endurance increases as well as angiogenesis in the skeletal
muscles (Kon et al., 2014). Taken together, these findings suggest
that combining exercise, be it low- to-high-intensity aerobic or
resistance, with hypoxic stressor would play a role in slowing
sarcopenia development as well as improving physical capacity
(via hypotensive and antioxidant actions) and well-being of
elderly individuals.

Logically, the next question is: what is the optimal
combination of exercise and hypoxia?

Hypoxia and exercise may have synergistic (positive) effects
in hypertensive, obese or elderly subjects. However, little is
known regarding the optimal combination between the physical
activity (e.g., exercise intensity, type of activity) and hypoxic (e.g.,
altitude level, optimal hypoxic dose, normobaric vs. hypobaric
hypoxia) components. Different combinations of these two
factors have to be further investigated to identify optimal and
individually tailored hypoxic exercise regimens. Based on the
provided evidences such protocols could result in (i) reduction
of metabolic and cardiovascular risk factors primarily related to
improved vascular function (NO bioavailability) in addition to
positive muscular (up-regulation of muscle oxidative enzymes,
ion transport proteins and muscle activation/perfusion) and (ii)
neuro-vegetative adaptations.
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