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Carbohydrate ingestion does not influence the change in energy cost during a 2-h run in well-trained triathletes
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The aim of this study was to examine whether the increase in the energy cost of running (C r ), previously reported to occur at the end of a prolonged run, could be influenced by the ingestion of either an artificially sweetened placebo (Pl) or a 5.5% carbohydrate (CHO) solution. Ten well-trained triathletes completed three testing sessions within a 3-week period. The aim of the first session was to determine maximal oxygen uptake (V 0 2max) and the velocity associated with ventilatory threshold (v VT ). The second and the third sessions were composed of two submaximal treadmill runs (20 min long, 0% grade, performed at v VT ), before and after an 80-min overground run, also conducted at v VT . During these submaximal tests, the subjects ingested (in a random order) either a Pl or CHO solution prior to the first submaximal run and every 20 min after that. During the first session, Ventilatory threshold (VT) occurred at [mean (SD)] 81.2 (2.5)% V0 2max and 16.5 (0.6) km • h -1 . A significant effect of exercise duration was found on C r (∆Cr) at the end of the run, whatever the solution ingested (∆C r = 5.7% and 7.01% for CHO and Pl, respectively). A reduction in the respiratory ex-change ratio (from 0.98 to 0.90) was observed only at the end of the Pl trial. In this study, C r seems to be affected only to a minor extent by substrate turnover. Moreover, the increase in the demand for oxygen, estimated from the increase in ventilation, accounted for only a minor proportion of the increase in C r (11% and 17% for CHO and Pl, respectively). No correlation was found between the changes in C r and the changes in the other physiological parameters recorded. These results suggest, indirectly, that C r increases during a 2-h run at 80% V0 2max in well-trained subjects can be explained mainly by alterations in neuromuscular performance, which lead to a decrease in muscle efficiency.

Introduction

Triathlon is an endurance activity in which athletes compete sequentially in swimming, cycling and running. In addition, the main constraint placed upon competitors during a triathlon race is the exercise duration, which ranges from 1 h to 10 h (Sprint to Ironman, respectively). Numerous studies have tried to identify those physiological Variables that are the most likely to result in successful triathlon performance. For exercise lasting more than 2 h, successful performances are dependent upon various physiological, biomechanical and psychological factors. Variables such as maximum oxygen uptake (V02 max), the maximal fraction of VO2 max that can be sustained and the energy cost of locomotion are often cited (e.g., [START_REF] O'toole | Applied physiology of triathlon[END_REF]. At the end of a triathlon, recent studies have observed a significant increase in energy cost that is related to a variation in some physiological or biomechanical parameters [START_REF] Guezennec | The energy cost of running increases at the end of a triathlon[END_REF][START_REF] Hausswirth | Relationships between running mechanics and running efficiency at the end of a triathlon and a marathon[END_REF].

The energy cost of running (C r ), defined as the amount of energy spent per unit distance (di Prampero 1986), depends upon both physiological and biomechanical factors, and several non-exclusive mechanisms have been proposed to explain the increase in C r (e.g., [START_REF] Martin | Biomechanical considerations for economical walking and running[END_REF]. Therefore, the issue of the effect of exercise duration on the increase in energy cost remains to be established in this area of research, which is essentially interdisciplinary. On the one hand, factors such as changes in running pattern and neuromuscular performance have been suggested to influence C r through an alteration in running mechanics [START_REF] Brisswalter | Variability in energy cost and walking gait during a racewalking in competitive race walkers[END_REF][START_REF] Hausswirth | Relationships between running mechanics and running efficiency at the end of a triathlon and a marathon[END_REF][START_REF] Nicol | Fatigue effects of marathon running on neuromuscular performance: changes in force, integrated electromyographic activity and endurance capacity[END_REF]. On the other hand, previous studies on long-distance events have implicated the role of physiological factors such as thermoregulation and substrate turnover in this increase in C r [START_REF] Bosch | Physiological differences between black and white runners during a treadmill marathon[END_REF][START_REF] Brisswalter | Variability in energy cost and walking gait during a racewalking in competitive race walkers[END_REF][START_REF] Bruckner | The energy cost of running increases with distance covered[END_REF][START_REF] Guezennec | The energy cost of running increases at the end of a triathlon[END_REF]. It has been suggested that muscle glycogen depletion, which occurs in active muscle fibers during prolonged exercise, affects C r [START_REF] Amstrong | Muscle fiber activity as a function of speed and gait[END_REF][START_REF] Guezennec | The energy cost of running increases at the end of a triathlon[END_REF]. Earlier studies have clearly shown that the significant alteration in C r observed after a race longer than 15 km is concomitant with a significant decrease in the respiratory exchange ratio (R) to values close to 0.85. [START_REF] Bosch | Physiological differences between black and white runners during a treadmill marathon[END_REF][START_REF] Brisswalter | Variability in energy cost and walking gait during a racewalking in competitive race walkers[END_REF][START_REF] Bruckner | The energy cost of running increases with distance covered[END_REF]. This decrease indicates that a long exercise duration leads to glycogen depletion and an increase in free fatty acid oxidation (e.g., [START_REF] Ahlborg | Substrate turnover during prolonged exercise in man. Splanchnic and leg metabolism of glucose, free fatty acids and amino acids[END_REF]. Thus, about half of the demand for energy is accounted for by the oxidative breakdown of lipid substrates, and the low efficiency of lipid oxidation can partly explain the increase in C r (e.g., [START_REF] Sahlin | Metabolic changes limiting muscle performance[END_REF]).

Classically, it has been reported that glycogen sparing during prolonged exercise is linked with the metabolism of the exogenous supply of carbohydrate (CHO: e.g., [START_REF] Tsintzas | Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men[END_REF]. Ingesting a CHO solution during prolonged submaximal exercise delays the onset of fatigue and improves endurance performance, especially in exercise lasting 2 h or more (e.g., [START_REF] Coyle | Timing and method of increased carbohydrate intake to cope with heavy training, competition and recovery[END_REF]. In addition, in some studies it has been observed that running performance is higher at the end of a 30-km run when subjects ingested a CHO-electrolyte solution than when they drank water [START_REF] Tsintzas | Influence of carbohydrate-electrolyte drinks on marathon running performance[END_REF][START_REF] Williams | Influence of carbohydrate fluid intake on endurance running performance[END_REF]). To the best of our knowledge, the effect of CHO ingestion during exercise lasting longer than 1 h has been studied mostly for exercise of moderate intensity (<75% VO2max). Nevertheless, endurance triathletes have been reported to be able to run at high submaximal intensities VO2max) corresponding to their ventilatory threshold (VT), at the end of a triathlon [START_REF] Sleivert | Physical and physiological factors associated with success in the triathlon[END_REF]. The aim of the current investigation was therefore to compare the change in C r (∆C r ) of well-trained triathletes during a 2-h run completed at VT, when ingesting a CHO solution or a sweetened placebo solution (Pl).

Methods

Subjects

The subjects were ten well-trained triathletes who were competing regularly at inter-regional or national level. All subjects were experienced treadmill runners and were injury free. The physical characteristics of the subjects are given in Table 1. Before participating in this study, the subjects were fully informed about the protocol, and informed consent was obtained prior to all testing, according to local ethical committee guidelines.

Protocol

Each subject completed three testing sessions in a 3-week period. Subjects were asked to stop their training program 24 h before each testing session. The first session was used to determine VO 2max and oxygen uptake (VO2) at the VT. The second and the third sessions were composed of two submaximal treadmill runs, which were performed before and after an 80-min overground run. All of these submaximal tests were conducted at the velocity that elicited VT (v VT ). According to previous studies [START_REF] Coyle | Timing and method of increased carbohydrate intake to cope with heavy training, competition and recovery[END_REF][START_REF] Gisolfi | Fluid balance for optimal performance[END_REF][START_REF] Tsintzas | Influence of carbohydrate-electrolyte drinks on marathon running performance[END_REF][START_REF] Tsintzas | Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men[END_REF], during these two sessions subjects had to ingest (in a random order), either an artificially sweetened PI drink, or a 5.5% CHO solution (glucose, fructose, malto-dextrins). The P1 and CHO solutions used contained the same concentration of electrolytes (sodium: 20 mEq, potassium: 5 mEq). Furthermore, subjects were required to record their normal diet and to consume exactly the same diet for 2 days before each of the submaximal sessions.

VO2max Session 1: evaluation of VO2max

VO2max was determined in a first session during an incremental protocol on a treadmill, according to the criteria described by [START_REF] Howley | Criteria for maximal oxygen uptake: review and commentary[END_REF]. After familiarization on the treadmill at 10 km • 11 -1 and 3% grade, the speed of walking was increased by 1 km • h -1 every 1 min until the subject reached volitional exhaustion. V0 2 max was deemed to have been reached when the following criteria had been achieved: a plateau in VO 2 , an R value of 1.15 or greater, and a post-exercise blood lactate level above 8 mmol • l -1 . The VT was estimated from the non-linearity of a plot of carbon dioxide output against VO 2 [START_REF] Sherill | Using smoothing splines for detecting ventilatory thresholds[END_REF]).

Sessions 2 and 3: overground run and submaximal tests

During the second and the third sessions, an overground run was undertaken on a 400-m track very close to the laboratory. The running speed of each subject was checked and regulated every 400 m, so that it was kept constant over the 80-min period. Before and after this overground test, each subject completed a submaximal test. Before the first submaximal test (Test 1), the subjects performed a 10min treadmill familiarization run at 10 km • h -1 .

After a 4-min rest period, the first 20-min, 0% grade submaximal run was carried out. The same test was performed immediately after the overground run (Test 2; Fig. 1). Throughout the test, the treadmill speed was controlled continuously by a photoelectric cell.

According to the study of [START_REF] Tsintzas | Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men[END_REF], after the accommodation run, 8 ml • kg -1 body weight of fluid had been ingested, and thereafter 2 ml • kg -1 body weight was ingested every 20 min.

Experimental measurements and calculations

At rest and during the treadmill exercise, respiratory gases were collected using a breath-by-breath system (CPX Medical Graphics). The interval between measurement of respiratory parameters was set at 10 s. Five periods were analyzed: the 3rd (T 3 ), the 10th (T10), and the 20th (T 20 ) min of Test 1, and at the beginning (T 100 ) and the end (T 120 ) of Test 2. The analyzers were calibrated before and after each subject's session by using gases of known concentration. Heart rate (HR) was recorded continuously (Baumann 5000). Fingertip samples of arterialized capillary blood were obtained before exercise and immediately at the end of each submaximal test (T 20 and T 120 ). The samples were analyzed for blood glucose concentration with an automated glucose oxidase method, and for lactate concentration (YSI, Yellow Spring Instruments). At the end of each submaximal treadmill test, the subjects were asked to report their rating of perceived exertion (RPE) using the Borg 15-grade scale [START_REF] Noble | The Borg scale: development, Administration and experimental use[END_REF]. Body mass (BM) was measured before and immediately after the submaximal run in order to observe a possible mass loss at the end of the prolonged run.

For each period, the C r was calculated from the VO 2 values recorded, according to the equation (di Prampero 1986): C r [(VO2 -V 02rest )v -1 ) • 60], where C r is expressed in ml • k-g -1 km 1, VO 2 in ml • kg -1 • min -1 , and v in km • h -1 . VO 2rest is resting VO 2 and was recorded during the 4 min preceding T1; the last 2-min values were used.

Statistical analysis

All data are expressed as the mean (SD). Two-way analyses of variance (CHO vs Pl) with repeated measures were performed using C r , minute ventilation (V E ), frequency of breathing (f b ), R (five periods), lactate concentration, plasma glucose concentration (three periods), RPE and BM (two periods) as dependant variables. Newman-Keuls post hoc tests were used to compare specific means.

Relationships between variables were analyzed using Spearmanrank correlation coefficients. For all of the statistical analyses, the level of significance was set at P < 0.05.

Results

The mean data for the maximal parameters recorded during the first session are presented in Table 1. During this test, VT occurred at 81.2 (2.5)% V02max and 16.5 (0.6) km • h -1 . Table 2 shows the mean Values of C r V E , f b , and R measured at T3 and T120 for both conditions (Pl vs CHO). In our study, the first period (T 3 ) was used to control intra-individual variability (i.e., coefficient of variation, cv) in physiological parameters among sessions. The results show no significant variation in C r or the other variables between sessions [for C r : cv = 2.5 (1.4)%, P > 0.05].

A significant effect of period was found for Cr, whereas no significant interaction effect of CHO or Pl ingestion was observed. Whatever the condition, we have found a slight but significant increase in C r , where ∆C r , = [(T 120 -T 3 )/T 3 ] • 100, at the end of the run (∆C r , = 5.7% and 7.01% for CHO and Pl, respectively). The mean Values of V0 2 represented 81.4% and 86.8% V02max •f or T3 and T 120, respectively < 0.05). Conversely, a significant interaction effect was found for R Values. At the end of the run, R decreased significantly only during the Pl trial (0.98 and 0.90, for T 3 and T 120 , respectively), whereas a non-significant trend was observed during the CHO trial (T 3 vs T 120 : 0.97 vs 0.95, respectively, P > 0.05).

During the first submaximal test, no significant difference was found between the C r values calculated at T 3 , T 10 and T 20 , and a significant increase in plasma glucose concentration was observed during the CHO trial at T 20 .

Significant variations in C r and R were observed at the beginning of the second test [∆C r (T 3 vs T 100 ) = 4.6% vs 4.7%, respectively, and ∆R (T 3 vs T 100 ) = -6.8% Vs -1.05%, respectively: Fig. 2]. Furthermore, a significant increase in V E , HR, and f b , were found with exercise duration, without any interaction effect of the solution ingested.

No effect of CHO ingestion was observed for RPE. Between the two submaximal tests, the RPE increased significantly from "very light" [9.7 (0.8) Vs 10.1 (0.9) for the Pl and CHO conditions, respectively] to "somewhat hard" [13.3 (1.2) vs 12.6 (0.8) for Pl and CHO trials, respectively]. Moreover, a significant increase in lactate concentration was observed between T 20 and T 120 (Table 3). Finally, for both conditions no significant changes in BM or plasma glucose concentration were found after the 2-h run.

The mean significant Variations expressed as a percentage of Test 1 [∆ = RT 120 -T 3 )/T 3 ] • 100} observed between the two tests were: ∆VE= 15.2 (12)%, ∆f b = 10.3 (9.8)%; ∆HR = 6.2 (4.6)%; ∆RPE = 30.6 (8.4)%; and ∆ lactate concentration = 18 (5)%. No significant correlations were found between these variations, and a wide inter-individual variability in these changes was observed for C r (range: -2% to 12%), V E (range: -8% to 38%), and RPE (range: 18% to 44%).

Discussion

The main finding of this study was that the significant increase in C r observed at the end of a 2-h run in well-trained triathletes seemed to occur independently of whether the CHO or Pl solution was ingested during exercise. This result can be compared with those of previous studies indicating similar results for exercise of a shorter duration (i.e., <90 min; [START_REF] Below | Fluid and carbohydrate ingestion independently improve performance during 1 hour of intense exercise[END_REF][START_REF] Sproule | The influence of either no fluid or carbohydrateelectrolyte fluid ingestion and the environment (thermoneutral vs hot and humid) on running economy after prolonged high intensity exercise[END_REF] or lower intensities (i.e., <75% VO 2max; [START_REF] Blomstrand | Effect of branched-chain amino acid and carbohydrate supplementation on the exercise-induced change in plasma and muscle concentration of amino acids in human subjects[END_REF][START_REF] Mitchell | Influence of carbohydrate dosage on exercise performance and glycogen metabolism[END_REF][START_REF] Tsintzas | Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men[END_REF].

Like previous studies conducted with triathletes [START_REF] Guezennec | The energy cost of running increases at the end of a triathlon[END_REF][START_REF] Hausswirth | Relationships between running mechanics and running efficiency at the end of a triathlon and a marathon[END_REF], the present study examined the effect of a 2-h run on the Variability in C r . While for a shorter exercise duration an increase in C r is not always reported to occur (e.g., [START_REF] Bruckner | The energy cost of running increases with distance covered[END_REF][START_REF] Dressendorfer | Acute reduction in maximal oxygen uptake after long-distance running[END_REF][START_REF] Sproule | The influence of either no fluid or carbohydrateelectrolyte fluid ingestion and the environment (thermoneutral vs hot and humid) on running economy after prolonged high intensity exercise[END_REF], this increase seems to occur systematically when the exercise duration is longer than 90 min (e.g., [START_REF] Bruckner | The energy cost of running increases with distance covered[END_REF][START_REF] Guezennec | The energy cost of running increases at the end of a triathlon[END_REF][START_REF] Hausswirth | Relationships between running mechanics and running efficiency at the end of a triathlon and a marathon[END_REF]Tsintzas et al. 1996 Xu and[START_REF] Xu | Effect of prolonged exercise at 65 and 80% of V02max on running economy[END_REF]. In our study, the mean increase in C r increase ranged from 5.7% to 7.01%. These Values are in agreement with those reported previously. [START_REF] Bruckner | The energy cost of running increases with distance covered[END_REF] observed a 5% increase in C r at the end of a marathon, and [START_REF] Guezennec | The energy cost of running increases at the end of a triathlon[END_REF] and [START_REF] Hausswirth | Relationships between running mechanics and running efficiency at the end of a triathlon and a marathon[END_REF] noted a 7% increase in C r in triathletes after a 135-min run.

Most of these studies have associated the increase in C r observed at the end of a long-duration running exercise with glycogen depletion and the progressive use of the fatty acids to replace CHO as an energy source. Classically, it has been suggested that glycogen depletion in working muscle is related to fatigue in athletes during exercise ranging in duration and intensity from 1 to 3 h and 65% to 85% V 0 2 max respectively (e.g., [START_REF] Coyle | Timing and method of increased carbohydrate intake to cope with heavy training, competition and recovery[END_REF]. Within this framework, CHO feedings during exercise improved endurance performance and delay, but did not prevent fatigue (e.g., [START_REF] Coyle | Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate[END_REF]). It has been suggested that during prolonged cycling exercise, CHO ingestion maintains plasma glucose concentrations late in exercise. Subjects would therefore be able to maintain a higher exercise intensity at the end of exercise [START_REF] Coggan | Carbohydrate ingestion during prolonged exercise: effects on metabolism and performance[END_REF]. In the present study, no hypoglycemic state was observed at the end of exercise during any of the treatments, and no effect of treatment was observed on plasma glucose concentration after 2 h. This is in agreement with the work of [START_REF] Tsintzas | Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men[END_REF], who found no significant difference between a P1 and a CHO trial from 40 min into a 2-h run [132 (12.3) min]. For running events, the effect of CHO ingestion on endurance response and/or glycogen sparing seems less clear, and is different than for cycling (e.g., [START_REF] Derman | Fuel kinetics during intense running and cycling when fed carbohydrate[END_REF]. For example, an improvement in endurance running performance is not systematically observed with CHO ingestion [START_REF] Noakes | Carbohydrate ingestion and muscle glycogen depletion during marathon running and ultramarathon racing[END_REF]). Furthermore, it has been suggested that glycogen depletion, and thus the importance of CHO availability, is less significant if the duration of the run is not longer than 2 h (e.g., [START_REF] Coggan | Carbohydrate ingestion during prolonged exercise: effects on metabolism and performance[END_REF]. It is therefore possible that in well-trained athletes, a 2-h run is not long enough to observe, on the one hand, a significant decrease in whole-muscle glycogen levels and, on the other hand, a significant effect of CHO ingestion on glycogen sparing. This assumption may be illustrated by the higher, but not significant, variation in C r observed during the P1 trial when compared to the CHO trial between T 100 and T 120 [∆C r , (T 120 -T 100 ) = 2.5% and 1.2% for the Pl and CHO trials, respectively]. Furthermore, we observed a significant decrease in R from T 100 to T 120 during the P1 trial only. Classically, a decrease in R is reported to occur during prolonged exercise, leading to a lower energy equivalent of V0 2 . This decrease is often used to explain increases in C r that occur as a result of the effect of substrate turnover. When this effect is slight, earlier results have indicated that the variability in C r could be independent of the reduction in R. For example, it has been reported that running economy could remain constant for 1 day after a 30-min run at 85% V02max despite a lower R [START_REF] Morgan | Effects of a prolonged maximal run on running economy and running mechanics[END_REF]). In the study presented here, we could make the hypothesis that in well-trained athletes, during a 2-h run the decrease in R was not sufficient to be associated with a significant rise in C r . These results seem, therefore, to minimize the role of metabolic changes in the increase in C r that occurs during high-intensity submaximal runs that range in duration from 1 to 2 h (e.g., [START_REF] Sproule | The influence of either no fluid or carbohydrateelectrolyte fluid ingestion and the environment (thermoneutral vs hot and humid) on running economy after prolonged high intensity exercise[END_REF]).

In the present study, several other factors could be responsible for the increase in C r . For one, we observed a systematic increase in the relative intensity of exercise with exercise duration, with a variation in the mean values of VO 2 that represented from 81.4% to 86.8% VO 2 max • Furthermore, we have found a significant increase in lactate concentration and in RPE between the submaximal tests. It is well known that when exercise is associated with a concomitant lactic acid accumulation (heavy intensity), a slow rise in VO 2 , known as the VO 2 slow component, occurs during constant-intensity prolonged exercise (e.g., [START_REF] Barstow | Characterization of VO 2 kinetics during heavy exercise[END_REF][START_REF] Poole | Determinants of oxygen uptake: implications for testing[END_REF]. While no significant effect of exercise duration on C r was found between the 3rd and the 20th min of exercise, the continuous additional rise in C r observed from the 100th min could be related to the mechanism underlying the VO 2 slow component. Several factors, such as the work of breathing, thermal stress, or the role of the exercising muscle, could contribute to this phenomenon [START_REF] Casabury | Influence of work rate on ventilatory and gas exchange kinetics[END_REF][START_REF] Poole | Role of exercising muscle in slow component of V0 2[END_REF]). On the one hand, thermal stress could be involved in the increase in V E observed at the end of the 2-h run [START_REF] Hanson | Determinants and consequences of ventilatory responses to competitive endurance running[END_REF]. Therefore, an increase in the work of breathing could be responsible for one part of the VO 2 slow component. For mean group values, our results indicate a significant increase of V E at the end of the test. Based on the equation proposed by [START_REF] Coast | Ventilatory work and oxygen consumption during exercise and hyperventilation[END_REF], the VO 2 demand estimated from the increase in the work of breathing represents, in our study, 39.5 (0.5) m10 2 • min -1 and, therefore, could only explain 11% and 17% of the increase in C r observed in the Pl and CHO trials, respectively. When individual adaptations are considered, no significant correlations were found between increases in V E and increases in C r (Fig. 3).

On the other hand, biomechanical factors are often attributed to the VO 2 slow component. [START_REF] Poole | Role of exercising muscle in slow component of V0 2[END_REF] suggested the important link between changes in the pattern of activity of the working muscle and the additional increase in V 0 2. Prolonged exercise is commonly associated with changes in electromyographic activity and/or changes in fiber recruitment. For instance, progressive increases in exercise intensity toward "heavy intensity" exercise would lead to a larger recruitment of type II fibers. Therefore, the resulting decrease in thermodynamic muscle efficiency (e.g., Woledge 1998) could explain, at least in part, the increase in the energy cost of locomotion. Furthermore, recent studies have observed that the reduction in neuromuscular performance previously reported to occur during prolonged cycling exercise (e.g. [START_REF] Capelli | Effects of prolonged cycle ergometry on maximal muscle power and oxygen uptake in humans[END_REF]) is more relevant after a marathon than after a triathlon [START_REF] Hausswirth | Relationships between running mechanics and running efficiency at the end of a triathlon and a marathon[END_REF][START_REF] Lepers | Reduction of neuromuscular performances after prolonged exercise: comparison of marathon and triathlon[END_REF]. While the relationship between increases in C r and mechanical changes with fatigue remains unclear, a major portion of the alteration in C r could be attributed to the increase in mechanical constraints (i.e., eccentric muscle work) that exists during prolonged running at high, but submaximal intensity.

In conclusion, the results of this study confirm that C r increases during a 2-h run. The increase in C r observed here was not influenced by CHO ingestion during exercise or by a reduction in R. These results appear to minimize the role of metabolic changes or increases in the work of breathing during prolonged exercise at 80% V0 2 max suggesting (indirectly) that the increase in C r observed in our welltrained subjects can be explained mainly by a decrease in muscle efficiency. 
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 123 Figure 1 Experimental protocol. (v VT -Ventilatory threshold)

  

Table 1

 1 Physical characteristics and maximal physiological data of the subjects (n = 10). (V02ma x Maximum oxygen uptake, H Rmax maximum heart rate, v max maximum velocity) V max represents the speed that elicits VO 2max .

	Parameter	Mean (SD)	Minimum	Maximum
	Age (years)	24.5 (3.2)	21	31
	Body mass (kg)	70.2 (7.9)	61	86
	Height (cm) VO2max (m1-kg -1 • min -1 )	179.7 (7.8) 66.8 (3.9)	173 59.2	195 73.4
	HR max (beats • min -1 ) v max (km • h -1 ) a	183 (9.7) 20.1 (1.45)	177 18	201 22

a

Table 2

 2 Mean group values of the energy cost of running (Cr), minute ventilation (VE), respiratory frequency (f b ) and respiratory exchange ratio (R), recorded at the 3rd min of Test 1 (T 3 ) and at the end of Test 2 (T 120 ), while ingesting either a placebo (Pl) or a carbohydrate (CHO) solution

	Variable	Solution	T 3		T 120	
			Mean	SD	Mean	SD
	Cr (ml • kg -1 • km -1 )	Pl	185.9	8.7	200.6*	9.2
		CHO	183.5	9.7	195.1*	9.1
	V E , (1 • min -1 )	P1	92.1	15.6	112.1*	17.7
		CHO	92.2	13.8	107.8*	14.8
	f b (cycles • min -1 )	P1	42.4	3.5	46.9*	4.1
		CHO	42.1	3.7	46.1*	4.2
	R	Pl	0.98	0.02	0.90*	0.04
		CHO	0.97	0.03	0.95**	0.03

* Significant difference between T 3 and T 120 ; ** significant difference between trials (Pl vs CHO)

Table 3

 3 Parameters recorded at rest and at the end of each submaximal test exercise while ingesting either a Pl or a CHO solution

	Parameters	Solution	Rest		T 20		T 120
				Mean	SD	Mean	SD	Mean	SD
	Body	mass	Pl	70.2	5.9			69.5	5.4
	(kg)		CHO	70.2	5.9			69.7	6.2
	Lactate		P1	1.1	0.1	1.8	0.2	4.2*	0.5
	concentration (mmol • 1 -1 )	CHO	0.9	0.1	1.6	0.2	3.9*	0.4
	Plasma		Pl	4.7	0.2	5.1	0.2	4.9	0.4
	glucose (mmol • 1 -1 )	CHO	4.9	0.3	5.8* , **	0.3	5.1*	0.5

* Significant difference between periods; ** significant difference between trials (Pl vs CHO)