Thierry Bernard 
  
Fabrice Vercruyssen 
  
F Grego 
  
Christophe Hausswirth 
  
R Lepers 
  
Jean-Marc Vallier 
  
Jeanick Brisswalter 
email: brisswalter@univ-tln.fr
  
Effect of cycling cadence on subsequent 3 km running performance in well trained triathletes

come    

Effect of cycling cadence on subsequent 3 km running performance in well trained triathletes

uring the last decade, numerous studies have investigated the effects of the cycle-run transition on subsequent running adaptation in triathletes. [START_REF] Millet | Physiological and biomechanical adaptations to the cycle to run transition in Olympic triathlon: review and practical recommendations for training[END_REF] Compared with an isolated run, the first few minutes of triathlon running have been reported to induce an increase in oxygen 2-4 fatigue and/or metabolic load induced by a prior cycling event on subsequent running performance. To the best of our knowledge, few studies have examined the effect of cycling task characteristics on subsequent running performance. [START_REF] Garside | Effects of bicycle frame ergonomics on triathlon 10-km running performance[END_REF][START_REF] Hausswirth | Effects of cycling alone or in a sheltered position on subsequent running performance during a triathlon[END_REF][START_REF] Hausswirth | Effect of two drafting modalities in cycling on running performance[END_REF] Hausswirth et al 15 16 indicated that riding in a continuous uptake (V ~O2 ) and heart rate (HR), an alteration in drafting position, compared with the no draft modality, ventilatory efficiency (V ~E), [START_REF] Hue | The influence of prior cycling on biomechanical and cardiorespiratory response profiles during running in triathletes[END_REF] and haemodynamic modifications-that is, changes in muscle blood flow. [START_REF] Kreider | Cardiovascular and thermal response of triathlon performance[END_REF] Moreover, changes in running pattern have been observed after cycling, such as an increase in stride rate 3 6 and modifications in trunk gradient, knee angle in the nonsupport phase, and knee extension during the stance phase. [START_REF] Hausswirth | Relationships between mechanics and energy cost of running at the end of a triathlon and a marathon[END_REF] These changes are generally related to the appearance of leg muscle fatigue characterised by perturbation of electromyographic activity of different muscle groups. [START_REF] Witt | Coordination of leg muscles during cycling and running in triathlon[END_REF] Recently, from a laboratory study, Vercruyssen et al [START_REF] Vercruyssen | Influence of cycling cadences on subsequent running performance in triathlon[END_REF] reported that it is possible for triathletes to improve the adaptation from cycling to running at an intensity corresponding to Olympic distance competition pace (80-85% maximal oxygen uptake (<V>O 2 MAX)). They showed a lower metabolic load during a running session after the adoption of the energetically optimal cadence (73 rpm) calculated from the V ~O2cadence relation [START_REF] Brisswalter | Energetically optimal cadence vs. freely chosen cadence during cycling: effect of exercise duration[END_REF][START_REF] Coast | Linear increase in optimal pedal rate with increased power output in cycle ergometry[END_REF][START_REF] Marsh | The association between cycling experience and preferred and most economical cadences[END_REF][START_REF] Marsh | Effect of cycling experience, aerobic power and power output on preferred and most economical cycling cadences[END_REF] compared with the freely chosen cadence (81 rpm) or the theoretical mechanical optimal cadence (90 rpm). [START_REF] Neptune | A theorical analysis of preferred pedaling rate selection in endurance cycling[END_REF] Furthermore, Lepers et al [START_REF] Lepers | Effect of cycling cadence on contractile and neural properties of knee extensors[END_REF] indicated that, after cycling, neuromuscular factors may be affected by exercise duration or choice of pedalling cadence. They observed, on the one hand, the appearance of neuromuscular fatigue after 30 minutes of cycling at 80% of maximal aerobic power, and, on the other hand, that the use of a low (69 rpm) or high (103 rpm) cycling cadence induced a specific neuromuscular adaptation, assessed by the variation in RMS/M wave ratio interpreted as the central neural input change.

From a short distance triathlon race perspective characterised by high cycling or running intensities, these observations raise a major question about the effect of neuromuscular significantly reduced oxygen uptake during cycling and improved the performance of a 5000 m run in elite triathletes. In addition, Garside and Doran [START_REF] Garside | Effects of bicycle frame ergonomics on triathlon 10-km running performance[END_REF] showed in recreational triathletes an effect of cycle frame ergonomics: when the seattube angle was changed from 73° to 81°, the performance of the subsequent 10 000 m run was improved-that is, there was a reduction in race time.

Therefore, the aim of this study was to examine in outdoor conditions the effects of different pedalling cadences (within the range 60-100 rpm) on the performance of a subsequent 3000 m track run, the latter depending mainly on both metabolic and neuromuscular factors. 17 18 

METHODS

Participants

Nine well motivated male triathletes currently competing at the national level participated in the study. They had been training regularly and competing in triathlons for at least four years. For all subjects, triathlon was their primary activity; their mean (SD) times for Olympic distance and sprint distance triathlons were 120 minutes 37 seconds (3.2) and 59 minutes 52 seconds (3.4) respectively. Mean (SD) training distances a week were 9.1 (1.9) km for swimming, 220.5 (57.1) km for cycling, and 51.1 (8.9) km for running. The mean (SD) age of the subjects was 24.9 (4.0) years. Their mean (SD) body weight and height were 70.8 (3.8) kg and 179 (3.9) cm respectively. The subjects were asked to abstain from exhaustive training throughout the experiment. Finally, they were fully informed of the content of the experiment, and written consent was obtained before all testing, according to local ethical committee guidelines.

Maximal cycling test

Subjects first performed a maximal test to determine V ~O2 MAX and ventilatory threshold. This test was carried out on an electromagnetically braked ergocycle (SRM; Jülich, Welldorf, Germany), 19 20 on which the handle bars and racing seat are fully adjustable both vertically and horizontally to reproduce the positions of each subject's bicycle. No incremental running test was performed in this study, as previous investigations indicated similar V ~O2 MAX values whatever the locomotion mode in triathletes who began the triathlon as their first sport. 21 [22 ] This incremental session began with a warm up of 100 W for six minutes, after which the power output was increased by 30 W a minute until volitional exhaustion. During this protocol, V ~O2 , V ~E, respiratory exchange ratio, and HR were continuously recorded every 15 seconds using a telemetric system collecting gas exchanges (Cosmed K4 , Rome, Italy) previously validated by Hausswirth et al. [START_REF] Hausswirth | The cosmed K4 telemetry system as an accurate device for oxygen uptake measurements during exercise[END_REF] V ~O MAX was determined according to criteria described by Howley et al [START_REF] Howley | Criteria for maximal oxygen uptake: review and commentary[END_REF] that is, a plateau in V ~O2 despite an increase in power output, a respiratory exchange ratio value of 1.15, or an HR over 90% of the predicted maximal HR (table 1). The maximal power output reached during this test was the mean value of the last minute. Moreover, the ventilatory threshold was calculated during the cycling test using the criterion of an increase in V ~E/V ~O with no concomitant increase in V ~E/V ~CO . [START_REF] Wasserman | Anaerobic threshold and respiratory gas exchange during exercise[END_REF] 

Cycle-run performance sessions

All experiments took place in April on an outdoor track. Outside temperature ranged from 22 to 25°C, and there was no appreciable wind during the experimental period. Each athlete completed in random order three cycle-run sessions (20 minutes of cycling and a 3000 m run) and one isolated run (3000 m). These tests were separated by a 48 hour rest period. Before the cycle-run sessions, subjects performed a 10 minute warm up at 33% of maximal power. [START_REF] Lepers | Effect of cycling cadence on contractile and neural properties of knee extensors[END_REF] During the cycling bout of the cycle-run sessions, subjects had to maintain one of three pedalling cadences corresponding to 60, 80, or 100 rpm. These cycling cadences were representative of the range of cadences selected by triathletes in competition. 15 26 Indeed, it was recently reported that, on a flat road at 40 km/h, cycling cadences could range from 67 rpm with a 53:11 gear ratio to 103 rpm with a 53:17 gear ratio. [START_REF] Lepers | Effect of pedalling rates on physiological response during an endurance cycling exercise[END_REF] However, 60 rpm is close to the range of energetically optimal cadence values, [START_REF] Marsh | Effect of cycling experience, aerobic power and power output on preferred and most economical cycling cadences[END_REF] 80 rpm is near the freely chosen cadence, 6 8 and 100 rpm is close to the cadence used in a drafting situation. 15 16 According to previous studies of the effect of a cycling event on running adaptation, 2 5 the cycling bouts were performed at an intensity above the ventilatory threshold corresponding to 70% of maximal power output (80% V ~O2 MAX) and were representative of a sprint distance simulation. 15 16 The three cycling bouts of the cycle-run sessions were conducted on the SRM system next to the running track. The SRM system allowed athletes to maintain constant power output independent of cycling cadence. In addition, feedback on selected cadence was available to the subjects via a screen placed directly in front of them.

After cycling, the subjects immediately performed the 3000 m run on a 400 m track. The mean (SD) transition time between the cycling and running events (40.4 (8.1) seconds) was the same as that within actual competition. [START_REF] Millet | Physiological and biomechanical adaptations to the cycle to run transition in Olympic triathlon: review and practical recommendations for training[END_REF] During the running bouts, race strategies were free, the only instruction given to the triathlete being to run as fast as possible over the whole 3000 m.

Measurement of physiological variables during the cycle-run sessions

V ~O2 , V ~E, and HR were recorded every 15 seconds with a K4 RQ . The physiological data were analysed during the cycling bouts at the following intervals: 5th-7th minute (5-7), 9th-11th minute (9-11), 13th-15th minute (13-15), 17th-19th minute (17-19), and every 500 m during the 3000 m run (fig 1).

Measurement of biomechanical variables during the cycle-run sessions

Power output and pedalling cadence were continuously recorded during cycling bout. During the run, kinematic data were analysed every 500 m using a 10 m optojump system (MicroGate, Timing and Sport, Bolzano, Italy). From this system, speed, contact, and fly time attained were recorded every 500 m over the whole 3000 m. The stride rate-stride length combination was calculated directly from these values. Thus the act of measuring the kinematic variables had no effect on the subjects' running patterns within each of the above 10 m optical bands.

Blood sampling

Capillary blood samples were collected from ear lobes. Blood lactate was analysed using the Lactate Pro system previously validated by Pyne et al. [START_REF] Pyne | Evaluation of the lactate pro blood lactate analyser[END_REF] Four blood samples were collected: before the cycle-run sessions (at rest), at 10 and 20 minutes during the cycling bouts, and at the end of the 3000 m run.

Statistical analysis

All data are expressed as mean (SD). The stability of the running pattern was described using the coefficient of variation ((SD/mean) 100) for each athlete. [START_REF] Maruyama | Temporal variability in the phase durations during treadmill walking[END_REF] A two way analysis of variance (cadence period time) for repeated measures was performed to analyse the effects of time and cycling cadence using V ~O2 , V ~E, HR, speed velocity, stride variability, speed variability, stride length, and stride rate as dependent variables.

For this analysis, the stride and speed variability (in %) were analysed by an arcsine transformation. A Newmann-Keuls post hoc test was used to determine differences among all cycling cadences and periods during exercise. In all statistical tests, the level of significance was set at p<0.05.

RESULTS

m performances

In this study, the performance of the isolated run was significantly better than the run performed after cycling (583.0 (28.3) and 631. 

Running bouts of cycle-run sessions

Table 2 gives mean values for V ~O2 , V ~E, and HR for the running bouts. The statistical analysis indicated a significant interac-running performance. A classical view is that performance in triathlon running depends on the characteristics of the preceding cycling event, such as power output, pedalling 1 29 tion effect (period time + cycling cadence) on V ~O2 during sub-cadence, and metabolic load. Previous investigations have sequent running (p<0.05). V ~O2 values recorded during the run section of the 60 rpm session were significantly higher than during the 80 rpm or the 100 rpm sessions (p<0.05, table 2). These values represent respectively 92.3 (3.0)% (60 rpm run), 85.1 (0.6)% (80 rpm run), and 87.6 (1.2)% (100 rpm run) of cycle V ~O2 MAX, indicating a significantly higher fraction of V ~O2 MAX sustained by subjects during the 60 rpm run session from 1000 to 3000 m than under the other conditions (p<0.05, fig 3). Changes in stride rate within the first 500 m of the 3000 m run were significantly greater during the 80 and 100 rpm run sessions than during the 60 rpm run session (1.52 (0.05), 1.51 (0.05), and 1.48 (0.03) Hz respectively). No significant effect of cycling cadence was found on either stride variability during the run or blood lactate concentration at the end of the cycle-run sessions (table 2).

DISCUSSION

The main observations of this study confirm the negative effect of a cycling event on running performance when compared with an isolated run. However, we observed no effect of the particular choice of cycling cadence on the performance of a subsequent 3000 m run. However, our results highlight an effect of the characteristics of the prior cycling event on metabolic responses and running pattern during the subsequent run.

Cycle-run sessions v isolated run and running performance

shown a systematic improvement in running performance when the metabolic load of the cycling event was reduced either by drafting position [START_REF] Hausswirth | Effects of cycling alone or in a sheltered position on subsequent running performance during a triathlon[END_REF] or racing on a bicycle with a steep seat-tube angle (81°). [START_REF] Garside | Effects of bicycle frame ergonomics on triathlon 10-km running performance[END_REF] Unlike a 3000 m run which is characterised by neuromuscular and anaerobic factors, 17 18 the improvement in running performance in these previous studies was observed over a variety of long distances (5-10 km) where the performance depends mainly on the capacity of the subject to minimise energy expenditure over the whole race. 1 14 15 29 Therefore one explanation for our results is that minimisation of metabolic load through cadence choice during cycling has a significant effect on the running time mainly during events of long duration. Further research is needed into the effect of cadence choice on total performance for running distances close to those of Olympic and Iron man triathlon events.

However, despite the lack of cadence effect on 3000 m race time, our results indicate an effect of cadence choice (60-100 rpm) on the stride pattern or running technique during a 3000 m run. This difference was mainly related to the higher velocity preferred by subjects immediately after cycling at 80 and 100 rpm and to the lower velocity from 1500 to 2500 m after cycling at high cadences. These results may suggest that the use of a low pedalling cadence (close to 60 rpm) reduces variability in running velocity-that is, one of the factors of running technique-during a subsequent run.

For running speeds above 5 m/s (> 18 km/h) and close to maximum values, the change in stride rate is one of the most

To our knowledge only one study has analysed the effect of important factors in increasing running velocity. In our cycling events on subsequent running performance when compared with an isolated run. [START_REF] Hausswirth | Effects of cycling alone or in a sheltered position on subsequent running performance during a triathlon[END_REF] The study showed, during a sprint distance triathlon (0.75 km swim, 20 km bike ride, 5 km run), a significant difference betweena5 km run after cycling (alone and in a sheltered position) and the run performed study, the significant increase in running speed observed during the first 500 m of the 80 and 100 rpm run sessions was associated with a significantly higher stride rate (1.51-1.52 Hz) than in the 60 rpm run session (1.48 Hz). The relation between stride rate and cycling cadence has been reported by 16 without a prior cycling event (isolated run). The cycling event

Hausswirth et al in elite subjects participating in a sprint discaused an increase in mean 5 km race time (1014 seconds) and a decrease in mean running velocity (17.4 km/h) compared with the isolated run (980 seconds and 18.2 km/h).

Our results are in agreement, showing an impairment in running performance after the cycling event whatever the choice of pedalling cadence. There was an increase in mean running time (631 seconds) and a decrease in mean running velocity (17.2 km/h) compared with the performance in the isolated run (583 seconds and 18.5 km/h). Therefore, one finding of our study is that a prior cycling event can affect running performance over the 3 km as well as the 5 km and 10 km distances. 1 29 One hypothesis to explain the alteration in running performance after cycling could be the high metabolic load sustained by subjects at the end of cycling characterised by an increase in blood lactate concentration (4-6 mmol/l) associated with a high V ~O2 MAX (81-83%) and HR max (88-92%). On the other hand, Lepers et al [START_REF] Lepers | Effect of cycling cadence on contractile and neural properties of knee extensors[END_REF] have recently shown in well trained triathletes a reduction in muscular force relating to both central and peripheral factors-that is, changes in M wave and EMG RMS-after 30 minutes of cycling performed at different pedalling cadences (69-103 rpm). We hypothesise that these modifications of neuromuscular factors associated with increasing metabolic load during cycling could increase the development of fatigue just before running, whatever the choice of pedalling cadence.

Cycling cadences and physiological and biomechanical characteristics of running

Our results show no effect of different cycling cadences (60-100 rpm) commonly used by triathletes on subsequent tance triathlon, indicating a significantly higher stride rate after cycling at 102 rpm (1.52 Hz) than after cycling at 85 rpm (1.42 Hz) for the first 500 m of the run.

These observations suggest that immediately after the cycle stage, triathletes spontaneously choose a race strategy directly related to the pedalling cadence, but this effect seems to be transitory, as no significant differences between conditions were reported after the first 500 m of running. This is in agreement with previous studies in which changes in stride pattern and running velocity were found to occur only during the first few minutes of the subsequent run. 1 3 5 6 Furthermore, the fact that triathletes prefer to run at a high pace after cycling at 80 and 100 rpm seems to confirm different anecdotal reports of triathletes. Most triathletes prefer to adopt a high pedalling cadence during the last few minutes of the cycle section of actual competition. Three strategies may be evoked to characterise the choice of cycling cadence: speeding up in the last part of the cycle stage in order to get out quickly on the run (when elite triathletes compete in draft legal events) [START_REF] Millet | Physiological and biomechanical adaptations to the cycle to run transition in Olympic triathlon: review and practical recommendations for training[END_REF] ; reducing power output and spin to minimise the effects of the bike-run transition; maintaining power output while increasing cadence. However, our results show that such a strategy is associated with higher metabolic cost during the cycling stage and greater instability in running pattern, suggesting that it is not physiologically beneficial for the athlete to adopt high pedalling cadences in triathlon competition.

During our study, cycling at 100 rpm was associated with an increase in metabolic cost as classically observed in previous studies for a high cadence such as an increase in V ~O2 , HR, V ~E, [START_REF] Hagan | Effect of pedal rate on cardiorespiratory responses during continuous exercise[END_REF] and blood lactate concentration. [START_REF] Brisswalter | Energetically optimal cadence vs. freely chosen cadence during cycling: effect of exercise duration[END_REF] At the end of the 100 rpm cycling task, mean blood lactate concentration was 7.0 (2.0) mmol/l, suggesting a high contribution of anaerobic metabolism, 8 whereas it was 4.6 (2.1) mmol/l after cycling at 60 rpm. The effect of pedalling rate on physiological adaptation during prolonged cycling has recently been investigated. 8 13 32 Brisswalter et al [START_REF] Brisswalter | Energetically optimal cadence vs. freely chosen cadence during cycling: effect of exercise duration[END_REF] indicated that cycling at a cadence higher than 95 rpm induces a significant increase in V ~O2 , V ~E, and lactate concentration after 30 minutes of exercise in triathletes.

Moreover, our results show an effect of cycling cadence on aerobic contribution during maximal running performance. The subjects were able to sustain a higher fraction of V ~O2 MAX during the 60 rpm run session-that is, 92%-than during the 80 and 100 rpm run sessions-84% and 87% of V ~O2 MAX respectively-(fig 3). These results suggest that the contribution of the anaerobic pathway 17 is more important after the higher cycling rates (80 and 100 rpm) than after the 60 rpm ride and could lead during a prolonged running exercise to earlier appearance of fatigue caused by metabolic acidosis. 33 34 In conclusion, our results confirm the alteration in running performance after a cycling event compared with an isolated run. The principal aim of our investigation was to evaluate the impact of different pedalling rates on subsequent running performance. No significant effect of cycling cadence was found on 3000 m running performance, despite some changes in running strategies, stride rate, and metabolic contributions. We chose a running distance of 3000 m to analyse the possible effect of neuromuscular fatigue-previously reported after a 30 minute cycling exercise at the same intensity [START_REF] Lepers | Effect of cycling cadence on contractile and neural properties of knee extensors[END_REF] -on running performance when neuromuscular and anaerobic factors make important contributions. 17 18 As the effect observed was not significant, the choice of cadence within the usual range does not seem to influence the performance of a middle distance run. One limiting factor of this study may be the choice of a short exercise duration because an effect of metabolic load reduction during the cycling stage on running performance was previously observed for a run longer than 5000 m. For multidisciplinary activities such as triathlon and duathlon, further applied research on the relation between cycling cadence and performance of the subsequent run is required to evaluate the influence of the practical conditions and constraints of actual competition. 

Take home message

Compared with an isolated run, completion of a cycling event impairs the performance of a subsequent run independently of the pedalling cadence. However, running strategy, stride rate, and metabolic contribution seem to be improved by the use of a low pedalling cadence (60 rpm). The choice of cycling cadence may have an effect on the running adaptation during a sprint or short distance triathlon. Much research has been conducted on the effects of cycling on physiological variables measured during subsequent running in triathletes. Few authors, however, have examined the effect of variation in cycling task characteristics on either such variables or overall run performance. This study, examining the effect of different pedalling cadences during a cycle at about 80% V ~O2 MAX on performance within a succeeding 3 km run by well trained male triathletes, adds to the published work in this area.

V Vleck

Chair, Medical and Research Committee of the European Triathlon Union and Senior Lecturer, School of Chemical and Life Sciences, University of Greenwich, London, UK Veronica@vleck.fsnet.co.uk
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 1 Figure 1Representation of the three cycle-run sessions. TR, Cycle-run transition; BS, blood samples taken; M 1 -M 4 , measurement intervals during cycling at 5-7, 9-11, 13-15, and 17-19 minutes; M 5 -M 10 , measurement intervals during running at 500, 1000, 1500, 2500, and 3000 m; WU, warm up for each condition.
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 23 Figure 2 Race strategies expressed as the evolution in running Figure 3 Changes in fraction of V ˙ O MAX (FV ˙ O MAX) sustained by
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Table 1

 1 Physiological characteristics of the subjects obtained during a maximal cycling testValues are expressed as mean (SD). V ˙ O 2 MAX, maximal oxygen uptake (ml/min/kg); V ˙ EMAX, maximal ventilation (litres/min); HR max , maximal heart rate (beats/min); VT, ventilatory threshold; MAP, maximal power output (W).

	RQ
	2

Table 2

 2 Mean values for power output and speed, oxygen uptake, expiratory flow, heart rate, blood lactate, and running performance obtained during the cycle-run sessions

		Cycle		Cycle		Cycle	
	Parameter	(60 rpm)_	Run	(80 rpm)	Run	(100 rpm)	Run
	Power output (W)/speed (km/h)	275.4 (19.4)	17.3 (1.1)	277.1 (18.6)	17.2 (1.20	277.2 (17.2)	17.1 (1.5)
	Oxygen uptake (ml/min/kg)	55.6 (4.6)	62.8 (7.3)*	55.3 (4.0)	57.9 (4.1)	56.5 (4.3)	59.7 (5.6)
	Expiratory flow (litres/min)	94.8 (12.2)	141.9 (15.9)	98.2 (9.2)	140.5 (14.6)	107.2 (13.0)*	140. 5 (21.8)
	Heart rate (beats/min)	163.5 (9.5)	184.2 (4.6)	166.1 (10.4)	185.8 (3.1)	170.7 (4.7)*	182. 6 (5.0)
	Lactataemia (mmol/l)	4.6 (2.1)	9.0 (1.9)	5.1 (2.1)	9.2 (1.2)	7.0 (2.0)*	9.9 (1.8)
	Stride rate (Hz)		1.48 (0.01)		1.49 (0.01)		1.48 (0.02)
	Running performance (s)		625.7 (40.1)		630.0 (44.8)		637.6 (57.9)
	*Significantly different from the other cycle-run sessions, p<0.05.				

  1 (47.6) seconds for the isolated run and mean cycle-run sessions respectively). No significant effect of cycling cadence was observed on subsequent 3000 m running performance. Running times were 625.7 (40.1), 630.0 (44.8), and 637.7 (57.9) seconds for the 60, 80, and 100 rpm run sessions respectively (table2). The mean running speed during the first 500 m (fig2) was significantly lower after the 60 rpm ride than after the 80 and 100 rpm cycling bouts(17.

	Cycling bouts of cycle-run sessions
	During the 20 minutes at 60, 80, and 100 rpm cycling bouts,
	average cadences were 61.6 (2.6), 82.7 (4.3) and 98.2 (1.7)
	rpm respectively. Mean HR and V ~E recorded during the 100
	rpm cycling bout were significantly higher than in other
	cycling conditions. Furthermore, blood lactate concentrations
	were significantly higher at the end of the 100 rpm bout than
	after the 60 and 80 rpm cycling bouts (7.0 (2.0), 4.6 (2.1) and
	5.1 (2.1) mmol/l respectively, p<0.05). Conversely, no effect of
	either pedalling rate or exercise duration was found on V ~O2
	(table 2, p>0.05).
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(1.1), 18.3 (1.1), and 18.3 (1.2) km/h respectively). In addition, the speed variability (from 500 to 2500 m) was significantly lower during the 60 rpm run session than for the other cycle-run conditions (2.18 (1.2)%, 4.12 (2.0)%, and 3.80 (1.8)% for the 60, 80, and 100 rpm run respectively).

2 velocity during the run bouts (60, 80, 100 rpm). *Significantly different from the running velocity during the 60 rpm run session, p<0.05. subjects during the running bouts (60, 80, and 100 rpm). *Significantly different from the initial period, p<0.05; †significantly different from the other conditions, p<0.05.