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Abstract

The purpose of this study was to analyse the effect of swimmer specialty on energy cost and motor
organization. The stroking parameters (velocity, stroke rate, stroke length, stroke index) and the index of
coordination (IdC) of 6 elite sprinters were compared with those of 6 elite long-distance swimmers during
an incremental swimming exercise test (6x300 m separated by 30 s of passive recovery) that progressively
increased the energy cost. Energy cost (C), with its aerobic (Caero) and anaerobic (Canaero) components,
was determined by measuring oxygen uptake (VO2) and blood lactate ([La]). Motor organization was
assessed by analysis of video recordings from aerial and underwater side-view cameras. The results showed
that throughout the test, both groups increased C, Canaero, stroke rate and 1dC and decreased Caero and
stroke length (all P<0.05). On the mean of the 300-m sets, sprinters had higher values for C (14.8 vs. 12.9
Jekg—1+em—1), Canaero (33.8 vs. 23.4%), [La] (5.9 vs. 3.1 mmolsL—1), stroke length (2.31 vs. 2.28 m) and
IdC (-11.2 vs. —21.7%) and lower values for Caero (66.2 vs. 79.6%), VO2 net (2 825 vs. 2 903
mLemin—1), stroke rate (0.55 vs. 0.62 Hz) and stroke index (2.96 vs. 3.19 m2es—1) than long-distance
swimmers (all P<0.05). For the same relative intensity, sprinters accumulated more lactate and swam more
slowly than long-distance swimmers; they showed greater change in their arm coordination but their
swimming economy was lower.
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Introduction

The energy cost of human locomotion differs greatly between land and water. Since the density of water is
about 800 times that of air, aquatic locomotion requires much greater energy expenditure to overcome
active drag. Di Prampero [13] compared several forms of locomotion at speeds corresponding to the world
record for aerobic events of comparable duration and showed that the energy cost was highest in swimming
(20 Jekg—1+*m—1 for 1 500-m free style at 1.67 mes—1), being respectively 4.7 and 8.7 times greater than for
running 5 km and cycling 10 km. As the density of water is greater than air, the mechanical efficiency
(MM), which is the conversion of energy expenditure ( v') (input) to mechanical work (W) (output)
(Equation 1), is low in swimming (8-12%) [4][39][42][44]:

=W /E™ (1)

The mechanical work (Wtot) is partitioned into the work done to overcome external forces (the external
work, Wext) and the work done to accelerate and decelerate the limbs with respect to the center of mass
(the internal work, Wint) [44]. The external work is related to the kinetic energy of the water and, because
water does not allow for a solid push-off, Wext is composed of the work needed to overcome drag (Wd)



that contributes to propulsion and the work wasted in the water (Wk). The relationship between Wd and
Wk is defined as the Froude efficiency (nF) (Equation 2) [44]:

Nr=Wo/Wq + Wi (2)
Finally, the propelling efficiency (mP) is [39][44]:
nP:Wd/Wtot (3)

Thus, the combination of Equations 1 and 3 (in Equation 4) highlights the importance of propelling
efficiency and the work used to overcome drag forces as factors determining energy expenditure and the
energy cost in swimming:

E'=Wd/(mP *nM) (4)

Toussaint et al. [39] showed that nP varies between 46% and 77% for top-level swimmers. Moreover,
Toussaint [38] observed lower nP for triathletes (44%) than for competitive swimmers (61%). Cappaert et
al. [7] reported differences in nP for sprint (48%), middle-distance (56%) and long-distance swimmers
(62%), whereas nM did not change within groups, being close to 4-5%.

Therefore, the swimmer specialty (sprint vs. long-distance) and the type of training, both of which are
related to different organismic characteristics (muscular, anthropometric, metabolic and cardiorespiratory)
[3][6][11][12], may influence propelling efficiency in a task-dependent manner [7][38][41]. Sprinters, for
example, are characterized by greater maximal strength and higher glycolysis and ATP-PCr enzymatic
activity than long-distance swimmers [12][24]. Costill et al. [11] showed that the contribution of muscular
strength to 25-m and 400-m swimming performance dropped to 86% and 58%, respectively, suggesting
that strength capacity contributes more to sprint performance. In fact, for middle- and long-distance events,
the swimming speed at the lactate threshold and VO2 max were the most important factors for high-level
performances [11][12]. Thus, according to Equation 4, the results of Cappaert et al. [7] suggested that the
higher v" of the sprinters may have been due to their higher Wd and lower nP.

However, the forward body displacement and thus the energy cost during aquatic locomotion are not only
related to the Froude and propelling efficiencies, but also depend on the timing between the actions
responsible for the external work, namely inter-limb coordination. Chollet et al. [10] assessed inter-arm
coordination in front crawl, using an index of coordination (IdC) which quantified the time gap between 2
propulsive phases. These authors emphasized that another way to achieve efficient motor organization is to
maintain a high average swimming speed by minimizing the time gap between 2 propulsive phases [10].
Propulsive discontinuities are among the factors (such as fluctuation of force impulse, active drag, etc.) that
cause large intra-cyclic speed variations [29][34], thereby increasing the energy cost [S]. Hence, the
opposition mode of inter-arm coordination, meaning the absence of a lag time between arm propulsions (i.
e., perfect propulsive continuity), seems the most economic [8]. From this perspective, catch-up
coordination could appear less economic as a lag time occurs between the propulsions of the left and right
arms [10] and could lead to intra-cyclic speed variations. In fact, there is not an “ideal” coordination mode
because coordination depends on the relations between interacting constraints (task, environment and
organismic [33][36]). For example, at high speed (above 1.8 mes—1), where environmental constraints are
elevated due to high active drag, superposition coordination mode (i. e., partial overlap of the 2 arm
propulsions) appears to be the only effective and economic choice [33]. Organismic characteristics also
influence arm coordination, as demonstrated for gender [30] and physical impairments and disabilities
[28][34]. Several comparative studies have shown that only elite sprint swimmers reach high swimming
speeds and switch to the superposition coordination mode [18][33], whereas less skilled swimmers [33] and
triathletes [18] remain in catch-up mode. For the latter, this result could be explained by the high
proportion of training in aerobic endurance [18] where speed is less than 1.8 mes—1. One case study
highlighted that IdC increased when swim speed and energy cost increased [23]. Thus, when speed and
energy cost increase, it is expected that swimmers will adapt their inter-arm coordination to follow the
imposed pacing and to keep their propulsion as economic as possible. Given that sprint swimmers usually
swim at speeds requiring greater anaerobic energy expenditure than long-distance swimmers [6], the aim of
this study was to analyse the effect of swimmer specialty on energy cost and motor organization (arm
coordination and stroking parameters).

Material and Methods

Participants



12 elite male front crawl swimmers voluntarily participated in this study in 2007 and composed 2 groups: 6
specialists in long distance (from 5 to 25 km) and 6 specialists in sprint (50 m and 100 m). The long-
distance swimmer characteristics were: 20.7+5.7 years, 17645 cm, 67.348.7 kg. This group included 4
swimmers on the national junior team, 2 international finalists in the World Cup, and a European champion
of the 10-km. The times in the 400-m and 1 500-m events for this group were 243.70+4.63 s and
954.64+15.03 s, respectively. The sprinter characteristics were: 22.2+4.4 years, 1837 cm, 73.3%£9.5 kg.
The times in the 50-m and 100-m events for this group were 22.97+0.59 s and 51.86+1.68 s, respectively.
The protocol was approved by the University ethics committee and explained to the swimmers, who then
gave their written consent to participate. This study was conducted in accordance with recognized ethical
standards and the national/international laws reported by Harriss and Atkinson [17].

Swim trials

In a 50-m open pool (26°C), the swimmers performed an incremental test. The test consisted of 6
consecutive 300-m trials separated by 30-s resting intervals. The starts were performed from the wall of the
pool and, because they were breathing through a snorkel, the swimmers were asked to do hand turns rather
than flip turns. Individual personal-best 400-m freestyle performances recorded within the month preceding
the testing period were used to determine the paces of the incremental sets. The pace of the first 300 m was
30 s slower than the time required to swim 300 m at the adjusted 400-m race pace. This time was then
reduced by 5 s for each consecutive 300 m until the final 300 m. Swimmers were verbally encouraged to
reach their maximal speed during the final 300 m. Thus, each set of 300 m represented the same relative
intensity for both sprint and long-distance swimmers. During a pilot study, the amount of time lost because
of snorkel use (0.58 s per 50 m) was determined for each swimmer by comparing 2 conditions, with and
without the snorkel, during a 50-m trial at maximal speed. The time lost from executing hand turns instead
of conventional flip turns (1.18 s per turn) was determined for each swimmer by comparing 2 conditions,
flip turn without snorkel and hand turn with snorkel, at maximal speed. They were thus taken into
consideration to adjust the speed of the sets. Swimming speed was monitored with an Aquapacer ‘Solo'
(Challenge and Response, Inverurie, UK). Markers were positioned every 2.5 m along the edge of the pool,
and an operator then walked along the deck with a stick immerged in the water to indicate the prescribed
swim speed to the swimmer. As done in previous studies, the operator used the auditory signal of the
Aquapacer in correspondence with the visual markers on the deck to match his walking pace [2]. The
swimmers were asked to maintain speed by keeping their heads at the level of the immerged stick of the
operator with a range <1 m.

Video recording and stroking parameters

Aerial and underwater (0.5 m) side-view cameras (Panasonic NV-GS17, 50 Hz) were superposed and fixed
on the right side of the pool. These cameras video-taped 2 strokes taken in the central part of the pool. A
video timer was included in the underwater view; this view was then synchronized and genlocked to the
aerial view with Adobe Premiere©. A calibration frame of 5 m in the horizontal axis and 2 m in the vertical
axis was positioned on the floor of the pool, orthogonally to the external side-view camera, for measuring
time over a 5-m distance to obtain the swim speed (v, in mes—1). When the front of the swimmer's head
reached the edge of the frame and left the second edge of the frame, time was recorded. The arm stroke rate
(SR, in Hz) was calculated from hand entry at the first stroke to hand entry at the second stroke. The stroke
length (SL, in mestroke—1) was calculated from the average speed (v) and the arm stroke rate (SR):

SL=v * SR (5)

According to Costill et al. [11], the stroke index (SI, in m2+s—1) is an indicator of swim efficiency and
relates to the product of swimming speed (v) and stroke length (SL):

SI=v « SL (6)
Arm coordination

Arm movement was broken down into 4 phases (entry, pull, push and recovery) [10]. The absolute duration
of each phase was measured with a precision of 0.02 s from the 2 synchronized side-views, and then the
relative duration of each phase was expressed as a percentage of complete stroke duration. The duration of
the propulsive phase is the sum of the pull and push phases, and the duration of the non-propulsive phase is
the sum of the entry and recovery phases. Arm coordination was quantified using the index of coordination
(IdC) [10]. When a lag time occurred between the propulsive phases of the 2 arms, the stroke coordination
was called ‘catch-up' (IdC <0%). When the propulsive phase of one arm started when that of the other arm
ended, the coordination was called ‘opposition' (IdC=0%). When the propulsive phases of the 2 arms



overlapped, the coordination was called ‘superposition' (IdC >0%). The IdC was calculated for 2 strokes
per 50 m taken in the 10-m central part, then averaged for the 3 laps of 50 m composing the last 150 m, to
correspond to the analysis of the oxygen uptake. The IdC was expressed as a percentage of complete arm
stroke duration.

Energy cost

During exercise, minute ventilation (v'v'E), oxygen uptake (v'O2) and carbon dioxide production (v'CO2)
were recorded breath-by-breath by the K4b2 telemetric gas exchange system (Cosmed, Roma, Italy)
[16][27], which was calibrated according to the manufacturer's instructions before each test. Ectopic
artefacts were manually eliminated and data were then averaged every 5 s. A capillary blood sample was
obtained from the finger no more than 30 s after the end of the first 5 sets and 3 min after the last set and
analysed for blood lactate concentration (Lactate Pro LT, Arkay Inc., Kyoto, Japan) [25]. The samples were
also taken at rest and at the end of each 300 m during the all-out exercise. The energy cost per unit distance
(C, mLO2+kg—1°m—1) was defined as:

C=E'Iv (7)

where E is the total metabolic energy expenditure (aerobic and anaerobic pathways) expressed in
mLO2+min—1+kg—1 and v, in m*min—1, is the swimming speed [13][15] at sub-maximal and maximal
intensities. The aerobic component of swimming energy cost (Caero) was equal to the ratio between
VO2net (i. e., the difference between the VO2 measured during the last minute of each swimming stage
and its value at rest) and the swimming speed [13][15]. Caero was calculated from the steady state of v'O2
[13][15], which corresponded to the last 150 m composing the 300 m. The net energy cost of anaerobic
glycolysis (Canaero) was estimated from blood lactate. Blood lactate measures (mmol) were converted to
oxygen equivalent values as 3 mLO2+kg—1 of bodyweight per mmol of blood lactate [14]. Thus, C
calculated as the addition of Caero and Canaero represented the energy expended to cover one unit of
distance while swimming at a given speed and with a given stroke (anaerobic alactic energy sources seem
to be neglected, or are assumed to be reduced, when evaluating v' for 200-m or longer events [26]). Finally,
C is given in JeKg—1*m—1, assuming that I mLO2 consumed by the human body yields 20.9 J (which is
true for a respiratory ratio of 0.96) [6][13].

Statistical analysis

All values are given as mean+SD. A normal distribution (Ryan Joiner test) and the homogeneity of
variance (Bartlett test) and authorized parametric statistics (Minitab 15.1.0.0, Minitab Inc., 2006) were
verified. 3-way ANOVA (set x group x subject) analysed the effects of the incremental tests on the
physiological and stroking parameters and IdC comparing the 2 groups (fixed factor: set and group; random
factor: subject; n=6 sets X 2 groups x 6 subjects=72). The Pearson correlation test and linear regression
then studied the relationships between energy cost (C, Caero, Canaero) and the IdC for each subject. Last,
the values of the slope (modelling the linear regression) of the sprinters' group were compared with those of
the long-distance swimmers' group with the Kruskal-Wallis test. For all tests, the level of significance was
fixed at P<0.05.

Results
Swim set effect

From the first to the last 300 m, all subjects increased speed (F5,52=33.2, P<0.001) by increasing the stroke
rate (F5,52 =46.7, P<0.001) and decreasing the stroke length (F5,52 = 15.9, P<0.001) ([Fig. 1]). For both
groups ([Table 1]), a significant increase in energy cost (C) was observed (F5,52 = 55.1, P<0.001) and
Caero decreased whereas Canaero increased (F5,52 = 9.5, P<0.001); however, the aerobic pathway
remained the main contributor to C (> 60%). The increase in C was related to a significant increase in
VO2net (F5,52 =21.6, P<0.001) and blood lactate concentration (F5,52 = 47.6, P<0.001). The IdC
increased for both groups (F5,52 = 10.3, P<0.001) over the 6 sets of 300 m, but it remained negative,
meaning that the arm coordination was in catch-up mode ([Fig. 2]).

Group effect

On the mean of the 6 sets of 300 m, the long-distance swimmers showed a higher mean speed (1.39+0.10
vs. 1.2740.09 mes—1; F1,52 = 62.4, P<0.001), stroke rate (0.62+0.07 vs. 0.55+0.04 Hz; F1,52=10.5,
P=0.02) and stroke index (3.1940.38 vs. 2.96+0.32 m2+S—1; F1,52=43.7, P<0.001) and a lower stroke



length (2.28+0.21 vs. 2.3140.15 mestroke—1; F1,52=8.3, P=0.006) and I1dC (-21.7+2.3 vs. —=11.243.6%);
F1,52=561.8, P<0.001) than the sprint swimmers ([Fig. 1]). On the mean of the 6 sets, the long-distance
swimmers expended lower C (F1,52=13.9, P<0.001), lower Canaero (F1,52=15.3, P<0.001) and higher
Caero (F1,52=15.3, P<0.001) than the sprint swimmers ([Table 1]). The long-distance swimmers also had
lower blood lactate concentration (3.14+2.7 vs. 5.9+42.2 mmolsL—1) (F1,52=10.4, P=0.02) and greater VO2
net (2 903+641 vs. 2 825691 mLemin—1) (F1,52=6.2, P=0.048) than the sprinters on the mean of the 6
sets.

The Pearson test of correlation showed positive relationships between IdC and C for the sprint (individual
correlation coefficients ranged from 0.86< r <0.98, all P<0.05, n=6) and long-distance swimmers
(individual correlation coefficients ranged from 0.81 <r <0.92, all P<0.05, n=6). [Fig. 2] indicates the
linear regression between IdC and C for the sprint (individual regression coefficients ranged from 0.75 <
R2 <0.96, all P<0.05, n=6) and long-distance swimmers (individual regression coefficients ranged from
0.66 <R2 <0.85, all P<0.05, n=6), and [Fig. 3] indicates the linear regression between IdC and Caero, and
between I1dC and Canaero, for the sprint (individual regression coefficients ranged from 0.67 < R2 <0.96,
all P<0.05, n=6) and long-distance swimmers (individual regression coefficients ranged from 0.66 < R2
<0.92, all P<0.05, n=6). The Kruskal-Wallis test showed a significantly higher slope for the sprint
swimmers in comparison with the long-distance swimmers, concerning the linear regression between 1dC
and C, between IdC and Caero, and between IdC and Canaero (all P<0.05).

Discussion

The main finding of our study was that the progressive 6x300-m test elicited a predominantly aerobic state
that increased energy cost and Canaero, which was more pronounced in the sprinters than in the long-
distance swimmers. Sprinters (i) train more using the anaerobic pathway and (ii) are accustomed to a wider
range of speeds and are able to reach higher maximal speeds. This aerobic test may have caused earlier
muscular fatigue in these swimmers, who had lower performances (swim speed), lower efficiency (stroke
index) and greater changes in arm coordination (increase in IdC) throughout the test than the long-distance
swimmers.

Energy cost and stroking parameters

Our C values were in accordance with the literature, notably with the results of Zamparo et al. [43], who
reported that elite long-distance swimmers had C of 15.4 Jekg—1+m—1 for a speed of 1.43 mes—1 assessed
during a 2-km trial. For our entire population, stroke rate increased while stroke length decreased when
speed and C increased. This finding also agreed with the findings of Zamparo et al. [43], who compared a
test of 3x400 m with progressive speed pre- and post-2-km trial (swum at the speed of 10 km). These
authors showed that fatigue in elite long-distance swimmers led to an increase in stroke rate and a decrease
in stroke length. Barbosa et al. [4] observed similar changes in the stroking parameters with fatigue during
a progressive test of 7200 m. The authors modelled these changes, showing significant quadratic
relationships between speed and stroke rate (R2=0.82) and between speed and stroke length (R2=0.65) and
linear relationships between energy cost and stroke rate (R2=0.20). Our results also indicated a higher
mean C in the sprinters than in the long-distance swimmers, which was in accordance with Chatard et al.
[9], who observed a C 15.7-16.5% greater for sprinters. In running, C was also about 10% greater in
sprinters than in long-distance runners [19].

Aerobic and anaerobic components of C

According to Capelli et al. [6], the increase in C corresponded to a decrease in Caero and an increase in
Canaero (which are expressed in % of C) in both our groups. However, our long-distance swimmers
expended greater Caero for a higher swimming speed than the sprint swimmers, meaning that long-distance
swimmers might be capable of reaching a higher percentage of maximal speed at the 400-m race pace (i. e.,
a higher percentage of maximal aerobic speed, taking into account that Lavoie and Montpetit [20] showed
that the speed of the 400-m swum at maximal intensity is highly correlated with maximal aerobic speed)
with lower blood lactate accumulation. This is in accordance with the results of Shepard et al. [35], who
showed higher blood lactate concentration and lower oxygen expenditure for sprinters vs. medium- and
long-distance swimmers during maximum exercise. Similarly, Olbrecht et al. [24] demonstrated that for the
same blood lactate concentration, shorter exercise times resulted in higher mean anaerobic energy delivery,
but that better aerobic endurance also increased the anaerobic contribution. This may explain why in our
experiment the long-distance swimmers had lower C and produced lower blood lactate concentration than
sprinters: our protocol imposed swim trials in a predominantly aerobic state and long-distance swimmers
are used to this physiological task. Conversely, sprinters use the anaerobic energy system more during
training and racing, and glycolysis and ATP-PCr enzymatic activity have a lower energy delivery rate than
the aerobic energy system [12][20][24]. It could thus be hypothesized that the sprinters became fatigued



more quickly during our aerobic tests and thus had lower swim economy and efficiency. Although they had
greater stroke lengths than the long-distance swimmers, these latter had lower energy cost (C, Caero),
higher efficiency (stroke index) and higher performance (swim speed). This hypothesis was confirmed by
Cappaert et al. [7], who showed that aerobic swims show greater propelling efficiency (np=43.5%) than
anaerobic swims (np=33.4%). Cappaert et al. [7] also reported higher np for long-distance swimmers
(62%) than for sprinters (48%).

Arm coordination

The index of coordination (IdC) increased for both groups, suggesting that increases in speed and fatigue
led to changes in arm coordination (according to [23]) associated with changes in stroking parameters (as
previously shown). However, the IdC of the long-distance swimmers was very negative for all sets of 300
m (mean IdC < —20%), showing greater catch-up coordination mode than in the sprinters (—15% < 1dC
<—5%). Moreover, the slopes of the linear regressions IdC - C, IdC - Caero and IdC - Canaero were
significantly steeper for the sprinters ([Fig. 2], [3]), suggesting they changed their arm coordination more
than the long-distance swimmers. Thus, a question arose: Why did the long-distance swimmers reach
higher speed at each set, displaying greater efficiency (higher stroke index) and economy (lower C) than
the sprinters, even though the latter changed their arm coordination and relied less on catch-up mode?

First, as previously suggested, it could be hypothesized that the sprint swimmers modified their arm
coordination more than the long-distance swimmers because they were more trained in anaerobic exercise;
they thus exhibited earlier muscular fatigue during a progressive swimming test that essentially imposed
aerobic swims. Conversely, the long-distance swimmers, who were more trained in aerobic exercise, kept
their coordination in great catch-up because they were highly focused on their hydrodynamic position in
order to minimize resistive forces and maximize efficiency [21].

Indeed, several studies [1][32] concerning sprint exercise have shown that IdC increases with fatigue and,
notably, the relative duration of the propulsive phases (pull and push) increases as the swimmers slow their
hand speed [37] and apply lower force and power output [40]. Alberty et al. [1] reported an increase in IdC
from —6.5 to —3.3% during a 4x50 m at maximal intensity, while for a 100-m race, Seifert et al. [32]
observed that the lowest performers (who seemed the most tired as they took 8.5 s more than the national
swimmer group to complete the 100 m) increased IdC from relative opposition (—1.2%) to superposition
coordination (2.8%) between the third and last 25-m lap.

These changes in arm coordination may be related to lower average hand speed, as Suito et al. [37] reported
a decrease from 2.54 to 2.29 mes—1 between the 2 parts of the 100 m. Toussaint et al. [40] showed that as
fatigue developed during a maximal-intensity 100 m, speed decreased by 12.4% and power by 23.5%, hand
speed dropped from 2.14 mes—1 at the first lap to 1.91 mes—1 at last lap and propelling efficiency from 81%
at the first 3 laps to 76% at the last lap. Changes in stroke organization and notably IdC with fatigue were
also observed for aerobic exercise [2][22]. During time limit to exhaustion tests swum at 95%, 100% and
110% of maximal aerobic speed, stroke length decreased while stroke rate increased over the test and arm
coordination switched from catch-up mode (IdC ~ —4%) to opposition mode (IdC ~ —1%) [2]. Alberty et
al. [2] hypothesized that fatigue development reduced the swimmers' capacity to generate a propulsive
impulse per stroke. To compensate, the swimmers accorded greater time to propulsion per distance unit to
maintain the overall propulsive impulse [2]. This was accomplished by increasing the IdC, which prompted
Alberty et al. [2] to emphasize that these modifications in stroke organization did not guarantee better
propulsion. In fact, as observed for sprint exercises, Monteil [22] showed a decrease in hand speed in the
insweep phase from 2.5 mes—1 to 2 mes—1 through an exhausting 400-m test in flume, and a decrease in the
resultant force in the insweep and final outsweep phases. Our hypothesis may be tenable, given these
findings about changes in arm coordination and propulsion during fatigue in sprint and aerobic exercise.

Second, it could be hypothesized that the sprint swimmers further modified their arm coordination because
they usually focus on propulsion to overcome high active drag during sprint races. In fact, sprinters usually
travel through a larger range of speeds in training and are accustomed to reaching higher maximal speeds
than long-distance swimmers; thus, their arm coordination may appear more sensitive to environmental
constraints (change in speed and high aquatic resistance). For example, Hue et al. [18] showed that
triathletes maintained catch-up coordination when speed was increased from the 800-m race pace to the
100-m race pace, possibly because they mostly reach lower speeds, train the acrobic pathway, and have
lower propelling efficiency than swimmers. Conversely, swimmers increased their IdC with speed until
reaching a relative opposition mode of coordination [18]. Toussaint [38] showed that during several 400-m
trials swum at 0.7-1.35 mes—1, triathletes used a higher proportion of their power output than swimmers to
overcome drag for an equal power input, supporting that triathletes have lower propelling efficiency.
However, it is important to note that the higher coordination variability observed for sprinters mostly
concerned high speeds, as only elite sprinters usually swim ~2 mes—1 and have an effective superposition



mode [31][33]. Indeed, Seifert et al. [31][33] observed a switch from catch-up to superposition
coordination mode above the critical speed of 1.8 mes—1 and/or the critical stroke rate of 0.83 Hz. In our
progressive 6x300 m, the sprinters reached lower speeds than the long-distance swimmers; moreover, the
speed of both groups remained below 1.6 mes—1. Therefore, our second hypothesis that the changes in the
sprinters' arm coordination could be related to greater motor flexibility remains limited. Indeed, McCabe
and Sanders [21], who compared sprinters and long-distance swimmers during sprint (4 repeats of 25 m)
and aerobic (400 m) exercise, observed only temporal hand kinematic differences between the 2 groups
during the sprint exercise, confirming that mostly high speeds impose great aquatic resistance that could
induce changes in stroke organization.

Conclusion

In response to the interaction of environmental and task constraints (respectively, speed increases and
instructions to swim 300 m for each set), the entire sample of swimmers increased C, which corresponded
to a decrease in Caero and an increase in Canaero. They also modified their stroking parameters by
increasing stroke rate and decreasing both stroke length and inter-arm coordination (IdC) toward less of a
catch-up mode. The progressive 6x300 m test imposed aerobic sets that led to a greater increase in energy
cost and Canaero for the sprinters than for the long-distance swimmers. Because sprinters spend more time
training the anaerobic pathway, are accustomed to a greater speed range, and reach higher maximal speeds,
this aerobic test caused them earlier muscular fatigue. They thus displayed lower performance (swim
speed), lower efficiency (stroke index), higher propulsive continuities (higher IdC) and a greater change in
arm coordination (increase in IdC) than the long-distance swimmers over the course of the test. Last, the
volume of aerobic or anaerobic training and specialization in long-distance or sprint swimming have a great
impact on the relationship of fatigue development and motor organization in swimmers. This suggests that
coaches should consider arm coordination, as well as stroking parameters, when a specialization towards
sprint or long-distance is chosen.
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Figures and Table

Fig. 1 Change in the stroking parameters along the 6 sets of 300 m for the sprint and long-distance

swimmers; v: speed in mrs ', SR: stroke rate in Hz, SL: stroke length in m-stroke™, SI: stroke index in
2 -1
m™s .
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Fig. 2 Linear regression between the index of coordination (IdC) and energy cost (C) for the sprint and
long-distance swimmers.
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Fig. 3 Linear regression between index of coordination (IdC) and the aerobic component of energetic cost
(Ciaero), and between IdC and the anaerobic component of energetic cost (Cynaero) for the sprint and long-

distance swimmers.
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Table 1 Change in the energy cost (C) and its aerobic (Cyeo) and anaerobic (Capaero) cOmponents along the 6
sets of 300 m increased in speed, for the sprint and long-distance swimmers.

Set of  Long-distance swimmers
300m C(Jkg"m™)

Mean

10.5
10.7
11.7
12.9
14.6
17.2
mean 129

A L A W N =

SD

23
2.7
2.7
2.0
2.2
24
3.3

Caero (%)
Mean SD
86.9 6.1
82.9 7.5
78.5 6.9
75.9 8.5
72.0 9.0
63.3 8.3
79.6 10.7

Ca naero (%)

Mean

13.1
17.1
21.6
24.1
28.0
36.7
234

SD

6.1
1.5
6.9
8.5
9.0
8.3
10.7

Sprint swimmers

C (kg 'm”) Caero (%) Canaero (79)
Mean SD Mean SD  Mean SD
13.3 2.4 70.7 82 293 8.2
13.4 2.2 67.3 11.0 32.7 11.0
14.4 1.9 67.2 9.9 329 9.9
15.1 1.7 66.0 9.9 34.0 9.9
15.6 1.6 65.3 8.6 347 8.6
17.2 2.1 60.8 7.8 392 7.8

14.8 23 662 94 338 94
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	ηF=Wd/Wd + Wk (2)
	Finally, the propelling efficiency (ηP) is [39][44]:
	ηP=Wd/Wtot (3)
	Thus, the combination of Equations 1 and 3 (in Equation 4) highlights the importance of propelling efficiency and the work used to overcome drag forces as factors determining energy expenditure and the energy cost in swimming:
	E˙=Wd/(ηP • ηM) (4)
	Toussaint et al. [39] showed that ηP varies between 46% and 77% for top-level swimmers. Moreover, Toussaint [38] observed lower ηP for triathletes (44%) than for competitive swimmers (61%). Cappaert et al. [7] reported differences in ηP for sprint (48...
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	Participants
	12 elite male front crawl swimmers voluntarily participated in this study in 2007 and composed 2 groups: 6 specialists in long distance (from 5 to 25 km) and 6 specialists in sprint (50 m and 100 m). The long-distance swimmer characteristics were: 20....
	Swim trials
	In a 50-m open pool (26 C), the swimmers performed an incremental test. The test consisted of 6 consecutive 300-m trials separated by 30-s resting intervals. The starts were performed from the wall of the pool and, because they were breathing through ...
	Video recording and stroking parameters
	Aerial and underwater (0.5 m) side-view cameras (Panasonic NV-GS17, 50 Hz) were superposed and fixed on the right side of the pool. These cameras video-taped 2 strokes taken in the central part of the pool. A video timer was included in the underwater...
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	According to Costill et al. [11], the stroke index (SI, in m2•s−1) is an indicator of swim efficiency and relates to the product of swimming speed (v) and stroke length (SL):
	SI=v • SL (6)
	Arm coordination
	Arm movement was broken down into 4 phases (entry, pull, push and recovery) [10]. The absolute duration of each phase was measured with a precision of 0.02 s from the 2 synchronized side-views, and then the relative duration of each phase was expresse...
	Energy cost
	During exercise, minute ventilation (v˙v˙E), oxygen uptake (v˙O2) and carbon dioxide production (v˙CO2) were recorded breath-by-breath by the K4b2 telemetric gas exchange system (Cosmed, Roma, Italy) [16][27], which was calibrated according to the man...
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	Results
	Swim set effect
	From the first to the last 300 m, all subjects increased speed (F5,52=33.2, P<0.001) by increasing the stroke rate (F5,52 = 46.7, P<0.001) and decreasing the stroke length (F5,52 = 15.9, P<0.001) ([Fig. 1]). For both groups ([Table 1] ), a significant...
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	Our C values were in accordance with the literature, notably with the results of Zamparo et al. [43], who reported that elite long-distance swimmers had C of 15.4 J•kg−1•m−1 for a speed of 1.43 m•s−1 assessed during a 2-km trial. For our entire popula...
	Aerobic and anaerobic components of C
	According to Capelli et al. [6], the increase in C corresponded to a decrease in Caero and an increase in Canaero (which are expressed in % of C) in both our groups. However, our long-distance swimmers expended greater Caero for a higher swimming spee...
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	The index of coordination (IdC) increased for both groups, suggesting that increases in speed and fatigue led to changes in arm coordination (according to [23]) associated with changes in stroking parameters (as previously shown). However, the IdC of ...
	First, as previously suggested, it could be hypothesized that the sprint swimmers modified their arm coordination more than the long-distance swimmers because they were more trained in anaerobic exercise; they thus exhibited earlier muscular fatigue d...
	Indeed, several studies [1][32] concerning sprint exercise have shown that IdC increases with fatigue and, notably, the relative duration of the propulsive phases (pull and push) increases as the swimmers slow their hand speed [37] and apply lower for...
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